Natural Hazards

, Volume 80, Issue 3, pp 1995–2021 | Cite as

Urban seismic risk index for Medellín, Colombia, based on probabilistic loss and casualties estimations

  • Mario A. Salgado-Gálvez
  • Daniela Zuloaga Romero
  • César A. Velásquez
  • Martha L. Carreño
  • Omar-Darío Cardona
  • Alex H. Barbat
Original Paper


Medellín is the second largest city of Colombia with more than 2 million inhabitants according to the latest census and with more than 240,000 public and private buildings. It is located on an intermediate seismic hazard area according to the seismic zonation of Colombia although no destructive earthquakes have occurred having as a consequence low seismic risk awareness among its inhabitants. Using the results of a fully probabilistic risk assessment of the city with a building by building resolution level and considering the dynamic soil response, average annual losses by sectors as well as casualties and other direct effects are obtained and aggregated at county level. Using the holistic evaluation module of the multi-hazard risk assessment CAPRA platform, EvHo, a comprehensive assessment that considered the social fragility and lack or resilience at county level is performed making use of a set of indicators with the objective of capturing the aggravating conditions of the initial physical impact. The urban seismic risk index, USRi, is obtained at county level which is useful to communicate risk to decision-makers and stakeholders besides making easy identifying potential zones that can be problematic in terms of several dimensions of the vulnerability. This case study is an example of how a multidisciplinary research on disaster risk reduction helps to show how risk analysis can be of high relevance for decision-making processes in disaster risk management.


Urban seismic risk index Urban resilience Holistic risk assessment Probabilistic seismic risk analysis CAPRA 



The authors are grateful for the support of the Ministry of Education and Science of Spain “Enfoque integral y probabilista para la evaluación del riesgo sísmico en España”—CoPASRE (CGL2011-29063). Also to the Spain’s Ministry of Economy and Competitiveness in the framework of the researcher’s formation program (FPI) and the support of the “Paul C. Bell, Jr.” risk management program of the Florida International University (FIU). This work has also been partially sponsored by the European Commission (project DESURBS-FP7-2011-261652). Finally the authors would like to thank an anonymous reviewer whose comments helped to improve the original version of the manuscript.


  1. Ahmad N, Ali Q, Crowley H, Pinho R (2014) Earthquake loss estimation of residential buildings in Pakistan. Nat Hazards. doi: 10.1007/s11069-014-1174-8 Google Scholar
  2. Alcaldía de Medellín (2010) Geonetwork. Accessed Jan 12 2013
  3. Alcaldía de Medellín (2012a) Encuesta de calidad de vida 2011. Departamento Administrativo de PlaneaciónGoogle Scholar
  4. Alcaldía de Medellín (2012b) Indicadores básicos. Situación de salud en Medellín 2011. Secretaría de Salud de MedellínGoogle Scholar
  5. Asociación Colombiana de Ingeniería Sísmica-AIS (2010) Estudio General de Amenaza Sísmica de Colombia. Comité AIS-300. Bogotá DC, ColombiaGoogle Scholar
  6. Asociación Colombiana de Ingeniería Sísmica-AIS (1996) Estudio General de Amenaza Sísmica de Colombia. Comité AIS-300. Bogotá DC, ColombiaGoogle Scholar
  7. Barbat AH, Carreño ML, Pujades LG, Lantada N, Cardona OD, Marulanda MC (2010) Seismic vulnerability and risk evaluation methods for urban áreas. A review with application to a pilot area. Struct Infrastruct Eng 6(1–2):17–38CrossRefGoogle Scholar
  8. Barbat AH, Carreño ML, Cardona OD, Marulanda MC (2011) Evaluación holística del riesgo sísmico en zonas urbanas Revista int. de métodos numér. para calc y diseño en ing 27(1):3–27Google Scholar
  9. Bazzurro P, Luco N (2005) Accounting for uncertainty and correlation in earthquake loss estimation. ICOSSAR. ISBN 90 5986 040 4Google Scholar
  10. Benson C (2003) The economy-wide impact of natural disasters in developing countries. Thesis, University of LondonGoogle Scholar
  11. Birkmann J, Cardona OD, Carreño ML, Barbat AH, Pelling M, Schneiderbauer S, Kienberger S, Keiler M, Alexander D, Zeil P, Welle T (2013) Framing vulnerability, risk and societal responses: the MOVE framework. Nat Hazards 67:193–211. doi: 10.1007/s11069-013-0558-5 CrossRefGoogle Scholar
  12. Bommer JJ, Crowley H (2006) The influence of ground-motion variability in earthquake loss modelling. Bull Earthq Eng. doi: 10.1007/s10518-006-9008-z Google Scholar
  13. Brink SA, Davidson RA (2014) Framework for comprehensive assessment of a city’s natural disaster risk. Earthq Spectra. doi: 10.1193/021914EQS031M Google Scholar
  14. Burton CG, Silva V (2014) Integrated risk modelling within the Global Earthquake Model (GEM): test case application for Portugal. In: Proceedings of the second European conference on earthquake engineering and seismology, Istanbul, TurkeyGoogle Scholar
  15. Burton CG, Khazai B, Silva V (2014) Social vulnerability and integrated risk assessment within the Global Earthquake Model. In: Proceedings of the tenth U.S. national conference on earthquake engineering, Anchorage, USAGoogle Scholar
  16. Caers J (2011) Modeling uncertainty in the earth sciences. Wiley, HobokenCrossRefGoogle Scholar
  17. Cannon T (2003) Vulnerability analysis, livelihoods and disasters components and variables of vulnerability: modelling and analysis for disaster risk management. Universidad Nacional de Colombia, ManizalesGoogle Scholar
  18. Cardona OD (2001) Estimación holística del riesgo sísmico utilizando sistemas dinámicos complejos. Ph.D. Thesis, Universidad Politécnica de Cataluña. Barcelona, SpainGoogle Scholar
  19. Cardona OD (2009) La gestión financiera del riesgo de desastres: Instrumentos financieros de retención y transferencia para la Comunidad Andina. PREDECAN, Lima, PerúGoogle Scholar
  20. Cardona OD, Hurtado J (2000) Holistic seismic risk estimation of a metropolitan center. In: 12th world conference on earthquake engineering, Auckland, New ZealandGoogle Scholar
  21. Cardona OD, Ordaz MG, Yamín LE, Marulanda MC, Barbat AH (2008a) Earthquake loss assessment for integrated disaster risk management. J Earthq Eng 12(S2):48–59CrossRefGoogle Scholar
  22. Cardona OD, Ordaz MG, Marulanda MC, Barbat AH (2008b) Estimation of probabilistic seismic losses and the public economic resilience—an approach for macroeconomic impact evaluation. J Earthq Eng 12(S2):60–70CrossRefGoogle Scholar
  23. Cardona OD, Ordaz M, Reinoso E, Yamín LE, Barbat AH (2010) Comprehensive approach to probabilistic risk assessment (CAPRA); International initiative for disaster risk management effectiveness. In: 14th European conference on earthquake engineering, Ohrid, MacedoniaGoogle Scholar
  24. Cardona OD, Ordaz M, Reinoso E, Yamín LE, Barbat AH (2012) CAPRA—comprehensive approach to probabilistic risk assessment: international initiative for risk management effectiveness. In: 15th world conference on earthquake engineering, Lisbon, PortugalGoogle Scholar
  25. Cardona OD, Ordaz M, Mora M, Salgado-Gálvez MA, Bernal GA, Zuloaga-Romero D, Marulanda MC, Yamín L, González D (2014) Global risk assessment: a fully probabilistic seismic and tropical cyclone wind risk assessment. Int J Disaster Risk Reduct 10:461–476. doi: 10.1016/j.ijdrr.2014.05.006 CrossRefGoogle Scholar
  26. Carreño ML (2006) Técnicas innovadoras para la evaluación del riesgo sísmico y su gestión en centros urbanos: Acciones ex ante y ex post. Doctoral Thesis, Universidad Politécnica de Cataluña, Barcelona, SpainGoogle Scholar
  27. Carreño ML, Cardona OD, Barbat AH (2007) Urban seismic risk evaluation: a holistic approach. Nat Hazards 40(1):137–172CrossRefGoogle Scholar
  28. Carreño ML, Cardona OD, Barbat AH (2012) New methodology for urban seismic risk assessment from a holistic perspective. Bull Earthq Eng 10(2):547–565CrossRefGoogle Scholar
  29. Carreño ML, Cardona OD, Barbat AH (2014) Método numérico para la evaluación holística del riesgo sísmico utilizando la teoría de conjuntos difusos. Revista int de métodos numér para calc y diseño en ing 30(1):24–34Google Scholar
  30. CIMNE-RAG (2014) Holistic risk evaluation tool EvHo V1.0. Program for computing holistic risk at urban level. Centro Internacional de Métodos Numéricos en Ingeniería, CIMNE, Risk Assessment Group, RAG, Barcelona, SpainGoogle Scholar
  31. Crowley H, Stafford PJ, Bommer JJ (2008) Can earthquake loss models be validated using field observations? J Earthq Eng 12:1078–1104CrossRefGoogle Scholar
  32. Cutter S, Boruff B, Shirley W (2003) Social vulnerability to environmental hazards. Soc Sci 84:242–261Google Scholar
  33. Daniell JE, Daniell KA, Daniell TM, Khazai B (2010) A country level physical and community risk index in the Asia-Pacific region for earthquakes and floods. In: Proceedings of the 5th international civil engineering conference in the Asian Region (CECAR), Sydney, AustraliaGoogle Scholar
  34. Davis I (2003) The effectiveness of current tools for the identification, measurement, analysis and synthesis of vulnerability and disaster risk. Universidad Nacional de Colombia, ManizalesGoogle Scholar
  35. Departamento Administrativo de Planeación (DAP) (2012) Pobreza y condiciones de vida de los habitantes de Medellín, 2011. Observatorio de Políticas PúblicasGoogle Scholar
  36. Evaluación de Riesgos Naturales América Latina-ERN-AL, (2011). CAPRA-GIS v2.0. Program for the probabilistic risk assessment. Accessed 15 May 2013
  37. Grossi P, Dong W, Boissonnade A (2008). Evolution of earthquake risk modeling. In: Proceedings of the 14th world conference on earthquake engineering, Beijing, ChinaGoogle Scholar
  38. International Bank for Reconstruction and Development (IBRD), The World Bank (2013) Pacific catastrophe risk assessment and financing initiative. Better risk information for smarter investments. Summary reportGoogle Scholar
  39. Jaiswal KS, Wald DJ, Earle PS, Porter KA, Hearne M (2011) Earthquake casualty models within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system. In: Spence R, So E, Scawthorn C (eds) Human casualties in earthquakes. Springer, New YorkGoogle Scholar
  40. Jaramillo N (2014) Evaluación holística del riesgo sísmico en zonas urbanas y estrategias para su mitigación. Aplicación a la ciudad de Mérida-Venezuela. Ph.D. Thesis, Universidad Politécnica de Cataluña. Barcelona, SpainGoogle Scholar
  41. Khazai B, Burton CG, Power C, Daniell J (2013) Socio economic vulnerability and integrated risk project. Technical report Nr. 2. Karlsruhe Institute of Technology, Willis Research Network, The Center for Disaster Management and Risk Reduction Technology, Global Earthquake ModelGoogle Scholar
  42. Khazai B, Burton CG, Tormene P, Power C, Bernasoocchi M, Daniell JE, Wyss B, Henshaw P (2014) Integrated risk modelling toolkit and database for earthquake risk assessment. In: Proceedings of the second European conference on earthquake engineering and seismology, Istanbul, TurkeyGoogle Scholar
  43. Khazai B, Bendimerad F, Cardona OD, Carreño ML, Barbat AH, Burton CG (2015) A guide to measuring urban risk resilience. Principles, tools and practice of urban indicators. Earthquake Megacities InitiativeGoogle Scholar
  44. Lantada N, Irrizari J, Barbat AH, Goula X, Roca A, Susagna T, Pujades LG (2010) Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bull Earthq Eng 8:201–229CrossRefGoogle Scholar
  45. Liel AB, Deierlein GC (2012) Using collapse risk assessments to inform seismic safety policy for older concrete buildings. Earthq Spectra 28(4):1495–1521. doi: 10.1198/1.4000090 CrossRefGoogle Scholar
  46. López J (2010) Índice de gestión de riesgo (IGR). Programa de información e indicadores de gestión del riesgo BID-IDEA. Departamento Administrativo de Planeación y Atención de Desastres. Medellín, ColombiaGoogle Scholar
  47. Luco N, Cornell CA (2007) Structure-specific scalar intensity measures for near-source and ordinary earthquake motions. Earthq Spectra 23(2):357–392CrossRefGoogle Scholar
  48. Marulanda MC, Cardona OD, Barbat AH (2009) Robustness of the holistic seismic risk evaluation in urban centers using the USRi. Nat Hazards 49(3):501–516CrossRefGoogle Scholar
  49. Marulanda MC, Carreño ML, Cardona OD, Ordaz M, Barbat AH (2013) Probabilistic earthquake risk assessment using CAPRA: application to the city of Barcelona, Spain. Nat Hazards 69:59–84. doi: 10.1007/s11069-013-0685-z CrossRefGoogle Scholar
  50. Marulanda MC, Cardona OD, Mora MG, Barbat AH (2014) Design and implementation of a voluntary collective earthquake insurance policy to cover low-income homeowners in a developing country. Nat Hazards 74:2071–2088CrossRefGoogle Scholar
  51. Ordaz M (2000) Metodología para la evaluación del riesgo sísmico enfocada a la gerencia de seguros por terremoto. Universidad Nacional Autónoma de México, México D.FGoogle Scholar
  52. Ordaz M, Miranda E, Reinoso E, Pérez-Rocha LE (2000) Seismic loss estimation model for Mexico City. In: Proceedings of the 12th world conference on earthquake engineeringGoogle Scholar
  53. Ordaz M, Aguilar A, Arboleda J (2007) CRISIS 2007 V7.6, Program for computing seismic hazard. Instituto de Ingeniería. Universidad Nacional Autónoma de MéxicoGoogle Scholar
  54. Paris G, Machete M, Dart R, Haller K (2000) Map and Database of Quaternary Faults and Folds in Colombia and Offshore Regions, USGS Open-File ReportGoogle Scholar
  55. Park J, Bazzurro P, Baker JW (2007) Modeling spatial correlation of ground motion Intensity Measures for regional seismic hazard and portfolio loss estimation. Applications of Statistics and Probability in Civil Engineering. ISBN 978-0-415-45211-3Google Scholar
  56. Proantioquia, Universidad EAFIT, Fundación Corona, Comfama, Comfenalco, Cámara de Comercio de Medellín, El Colombiano, Cámara de Comercio de Bogotá and El Tiempo (2012). Medellín cómo vamos?Google Scholar
  57. Pulido N (2003) Seismotectonics of the Northern Andes (Colombia) and the development of seismic networks. Bull Int Inst Seismol Earthq Eng Spec Ed 69–76.
  58. Renn O (2008) Concepts of risk: an interdisciplinary review. In: Proceedings of the ISA conference, Barcelona, SpainGoogle Scholar
  59. Saaty T, Vargas L (1991) Prediction, projection and forecasting: applications of the analytic hierarchy process in economics, finance, politics, games and sports. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  60. Salgado-Gálvez MA, Bernal GA, Yamín LE, Cardona OD (2010) Evaluación de la amenaza sísmica de Colombia. Actualización y uso en las nuevas normas colombianas de diseño sismo resistente NSR-10. Rev de ing 32:28–37. Universidad de Los Andes, Bogotá, ColombiaGoogle Scholar
  61. Salgado-Gálvez MA, Zuloaga D, Cardona OD (2013) Evaluación probabilista del riesgo sísmico de Bogotá y Manizales con y sin la influencia de la Caldas Tear. Rev de ing. 38:6–13. Universidad de Los Andes, Bogotá, ColombiaGoogle Scholar
  62. Salgado-Gálvez MA, Zuloaga D, Bernal GA, Mora MG, Cardona OD (2014a) Fully probabilistic seismic risk assessment considering local site effects for the portfolio of buildings in Medellín, Colombia. Bull Earthq Eng 12:671–695. doi: 10.1007/s10518-013-9550-4 CrossRefGoogle Scholar
  63. Salgado-Gálvez MA, Barbat AH, Cardona OD, Carreño ML, Velásquez CA, Zuloaga D (2014b) Urban seismic risk index for Medellín: a probabilistic and holistic approach. In: Proceedings of the second IRDR conference, Beijing, ChinaGoogle Scholar
  64. Salgado-Gálvez MA, Zuloaga D, Bernal GA, Cardona OD (2014c) Comparación de los resultados de riesgo sísmico en dos ciudades con los mismos coeficientes de diseño sismo resistente. Rev de ing 41:8–14. Universidad de Los Andes, Bogotá, ColombiaGoogle Scholar
  65. Salgado-Gálvez MA, Carreño ML, Barbat AH, Cardona OD (2015a) Evaluación probabilista del riesgo sísmico en Lorca mediante simulaciones de escenarios. Revista int de métodos numér para calc y diseño en ing. doi: 10.1016/j.rimni.2014.12.001 Google Scholar
  66. Salgado-Gálvez MA, Bernal GA, Cardona OD (2015b) Evaluación probabilista de la amenaza sísmica de Colombia con fines de actualización de la Norma Colombiana de Diseño de Puentes CCP-14. Revista int de métodos numér para calc y diseño en ing. doi: 10.1016/j.rimni.2015.07.001
  67. Salgado-Gálvez MA, Bernal GA, Barbat AH, Carreño ML, Cardona OD (2015c) Probabilistic estimation of annual lost economic production due to premature deaths because of earthquakes. Hum Ecol Risk Assess. doi: 10.1080/10807039.2015.1095072
  68. Silva V, Crowley H, Varum H, Pinho R (2014) Seismic risk assessment for mainland Portugal. Bull Earthq Eng. doi: 10.1007/s10518-014-9630-0 Google Scholar
  69. Sistema Distrital de Prevención y Atención de Emergencias (SDPAE) (2002) Plan de respuesta a emergencias por terremoto en Bogotá D.C. Alcaldía de Bogotá D.C. ColombiaGoogle Scholar
  70. Sistema Municipal Para la Atención de Desastres (SIMPAD), Universidad EAFIT, Integral, INGEOMINAS and Universidad Nacional de Colombia Sede Medellín (1999) Instrumentación y microzonificación sísmica del área urbana de MedellínGoogle Scholar
  71. Taboada A, Rivera A, Fuenzalida A, Cisternas A, Philip H, Bijwaard H, Olaya J, Rivera C (2000) Geodynamics of the northern Andes. Subductions and intracontinental deformation (Colombia). Tecton 19(5):787–813CrossRefGoogle Scholar
  72. Velásquez CA, Cardona OD, Mora MG, Yamín LE, Carreño ML, Barbat AH (2014) Hybrid loss exceedance curve (HLEC) for disaster risk assessment. Nat Hazards 72:455–479CrossRefGoogle Scholar
  73. Zuloaga D, Salgado-Gálvez MA, Cardona OD, Yamín LE (2013) Implicaciones en la estimación del riesgo sísmico de Bogotá como resultado de una nueva interpretación sismo-tectónica. In: Proceedings of the VI Congreso Nacional de Ingeniería Sísmica. Bucaramanga, ColombiaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Centre Internacional de Metodes Numerics en Enginyeria (CIMNE)Universitat Politecnica de CatalunyaBarcelonaSpain
  2. 2.Illinois Institute of TechnologyChicagoUSA
  3. 3.Instituto de Estudios Ambientales (IDEA)Universidad Nacional de Colombia Sede ManizalesManizalesColombia

Personalised recommendations