Natural Hazards

, Volume 80, Issue 2, pp 901–934 | Cite as

Tsunami potential from local seismic sources along the southern Middle America Trench

  • N. Zamora
  • A. Y. Babeyko
Original Paper


The Middle America convergent margin is capable of generating tsunamigenic earthquakes as portrayed through historical data. However, historical tsunamigenic sources appear to be unevenly distributed along the Middle America convergent margin. The last significant tsunami generated along the southern segments of this convergent margin occurred in 1992 causing 10-m run-up in Nicaragua. In particular, the Costa Rican Pacific coast has not clear evidences of significant wave heights or local tsunami events. Partly this could be explained by the lack of historical data since paleotsunami information is not available; thus, no tsunami data beyond 500 years could be found. Nevertheless, large rupture areas or shallow ruptures offshore Costa Rica cannot be neglected. We hereby present the results of numerical simulations aimed to assess the tsunamigenic potential of seismic sources offshore southern Central America. Our approach follows the deterministic method where earthquake maximum credible scenarios are assessed. We assumed hundreds of fault ruptures to obtain surface displacement and tsunami wave heights at the shoreline to assess the tsunami threat along south Nicaragua and Costa Rica. These fault scenarios are based on historical earthquakes as well as on the newest geodetic studies that provided slip deficit. Shallow part of locked segments in this region could release accumulated stress in the near future and may generate tsunamis similar to the 1992 Nicaragua M w 7.6 and 2012 El Salvador M w 7.4 tsunami earthquakes. The numerical simulations presented in this study show that maximum wave heights up to 2–6 m could affect the southern Pacific coast of Central America even when moderate-to-large M w 7.0–8.0 interplate or outer rise earthquakes occur.


Surface deformation Seismic tsunamigenic sources Tsunami threat Southern Central America 



We are grateful to L. Feng for providing the Nicoya Peninsula (NP) interseismic coupling model and H. Yue for sharing the Nicoya 2012 earthquake model. Thanks to J. Walter and Y. Jiang for providing tremors and the slow slip events locations along the NP. H. DeShon made available the Nicoya slab contours and microseismicity, and S. Hansen provided the focal mechanism. We want to thank G. Franchello for sharing the HyFlux2 code. M. Protti is acknowledged for his valuable help with explaining aspects of earthquake potential in the study area, and C. Ranero is acknowledged for clarifying aspects of the structural characteristics offshore Nicoya. We also thank W. Rojas for discussion regarding the seismic catalog of Central America. We aknowledge the Editor's work and sincerely thank the helpful comments of Dr. E. Ulutas and an anonymous reviewer. Thanks to S. Chacón, I. Arroyo and G. Cárdenes for technical suggestions. We acknowledge A. Höchner for providing Green Functions for Central America that were used in the first step of this research to compare dislocation models. Most figures were drawn using the GMT software (Wessel and Smith 1998). NZ thanks Helmholtz Association and the GeoSim Program for providing funding for this research.

Supplementary material

11069_2015_2004_MOESM1_ESM.docx (8.2 mb)
Supplementary material 1 (DOCX 8366 kb)


  1. Aki K (1966) Generation and propagation of G waves from the Niigata earthquake of june 16, 1964. Bull Earthq Res Inst 44:73–88Google Scholar
  2. Álvarez-Gómez JA, Meijer PT, Martínez-Díaz JJ, Capote R (2008) Constraints from finite element modeling on the active tectonics of northern Central America and the Middle America Trench. Tectonics. doi: 10.1029/2007TC002162 Google Scholar
  3. Álvarez-Gómez JA, Gutiérrez Gutiérrez OQ, Aniel-Quiroga Í, González M (2012) Tsunamigenic potential of outer-rise normal faults at the Middle America Trench in Central America. Tectonophysics 574–575:133–143. doi: 10.1016/j.tecto.2012.08.014 CrossRefGoogle Scholar
  4. Arroyo IG, Husen S, Flueh ER et al (2009) Three-dimensional P-wave velocity structure on the shallow part of the Central Costa Rican Pacific margin from local earthquake tomography using off- and onshore networks. Geophys J Int 179:827–849. doi: 10.1111/j.1365-246X.2009.04342.x CrossRefGoogle Scholar
  5. Arroyo IG, Husen S, Flueh ER (2013) The seismogenic zone in the Central Costa Rican Pacific margin: high-quality hypocentres from an amphibious network. Int J Earth Sci. doi: 10.1007/s00531-013-0955-8 Google Scholar
  6. Arroyo IG, Grevemeyer I, Ranero CR, VonHuene R (2014) Interplate seismicity at the CRISP drilling site: the 2002 M w = 6.4 Osa Earthquake at the southeastern end of the Middle America Trench. Geochem Geophys Geosyst 15:3035–3050CrossRefGoogle Scholar
  7. Avants M, Schwartz S, Newman AV, DeShon H (2001) Large underthrusting earthquakes beneath the Nicoya Peninsula. Am Geophys Union Fall Meet. Fall Meeting Supplementary, San Francisco, p T52E-07Google Scholar
  8. Babeyko AY, Hoechner A, Sobolev SV (2010) Source modeling and inversion with near real-time GPS: a GITEWS perspective for Indonesia. Nat Hazards Earth Syst Sci 10:1617–1627. doi: 10.5194/nhess-10-1617-2010 CrossRefGoogle Scholar
  9. Barckhausen U, Roeser HA, von Huene R (1998) Magnetic signature of upper plate structures and subducting seamounts at the convergent margin off Costa Rica. J Geophys Res 103:7079–7093CrossRefGoogle Scholar
  10. Barckhausen U, Ranero CR, Von Huene R et al (2001) Revised tectonic boundaries in the Cocos Plate off Costa Rica: implications for the segmentation of the convergent margin and for plate tectonic models. J Geophys Res 106:207–220Google Scholar
  11. Benito MB, Lindholm C, Camacho E et al (2012) A new evaluation of seismic hazard for the Central America Region. Bull Seismol Soc Am 102:504–523. doi: 10.1785/0120110015 CrossRefGoogle Scholar
  12. Bilek SL, Lay T (1999a) Comparison of depth dependent fault zone properties in the Japan Trench and Middle America Trench. Pure Appl Geophys 154:433–456. doi: 10.1007/s000240050238 CrossRefGoogle Scholar
  13. Bilek SL, Lay T (1999b) Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature 400:443–446CrossRefGoogle Scholar
  14. Bilek SL, Schwartz SY, DeShon HR (2003) Control of seafloor roughness on earthquake rupture behavior. Geology 31:455–458. doi: 10.1130/0091-7613(2003)031<0455:COSROE>2.0.CO;2 CrossRefGoogle Scholar
  15. Borrero JC, Kalligeris N, Lynett PJ et al (2014) Observations and modeling of the August 27, 2012 earthquake and tsunami affecting El Salvador and Nicaragua. Pure Appl Geophys. doi: 10.1007/s00024-014-0782-2 Google Scholar
  16. Brown KM, Tryon MD, Deshon HR et al (2005) Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone. Earth Planet Sci Lett 238:189–203. doi: 10.1016/j.epsl.2005.06.055 CrossRefGoogle Scholar
  17. Chacón-Barrantes SE, Protti M (2011) Modeling a tsunami from the Nicoya, Costa Rica, seismic gap and its potential impact in Puntarenas. J South Am Earth Sci 31:372–382. doi: 10.1016/j.jsames.2011.03.013 CrossRefGoogle Scholar
  18. Christensen DH, Ruff LJ, Arbor A (1988) Seismic coupling and outer rise earthquakes. J Geophys Res 93:13421–13444CrossRefGoogle Scholar
  19. Correa-Mora F, DeMets C, Alvarado D et al (2009) GPS-derived coupling estimates for the Central America subduction zone and volcanic arc faults: El Salvador, Honduras and Nicaragua. Geophys J Int 179:1279–1291. doi: 10.1111/j.1365-246X.2009.04371.x CrossRefGoogle Scholar
  20. Davis E, Heesemann M, Wang K (2011) Evidence for episodic aseismic slip across the subduction seismogenic zone off Costa Rica: CORK borehole pressure observations at the subduction prism toe. Earth Planet Sci Lett 306:299–305. doi: 10.1016/j.epsl.2011.04.017 CrossRefGoogle Scholar
  21. DeMets C (2001) A new estimate for present-day Cocos-Caribbean plate motion: implications for slip along the Central American volcanic arc. Geophys J Int 28:4043–4046Google Scholar
  22. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80. doi: 10.1111/j.1365-246X.2009.04491.x CrossRefGoogle Scholar
  23. Denyer P, Gazel E (2009) The Costa Rican Jurassic to Miocene oceanic complexes: origin, tectonics and relations. J South Am Earth Sci 28:429–442. doi: 10.1016/j.jsames.2009.04.010 CrossRefGoogle Scholar
  24. DeShon HR, Schwartz SY, Newman AV et al (2006) Seismogenic zone structure beneath the Nicoya Peninsula, Costa Rica, from three-dimensional local earthquake P - and S -wave tomography. Geophys J Int 164:109–124. doi: 10.1111/j.1365-246X.2005.02809.x CrossRefGoogle Scholar
  25. Dixon T (2013) Detailed data available for recent costa rica earthquake. EOS Trans 94:17–18. doi: 10.1029/94JB03099 CrossRefGoogle Scholar
  26. Feng L, Newman AV, Protti M et al (2012) Active deformation near the Nicoya Peninsula, northwestern Costa Rica, between 1996 and 2010: interseismic megathrust coupling. J Geophys Res Solid Earth 117:B06407. doi: 10.1029/2012JB009230 Google Scholar
  27. Fernández Arce M, Doser DI (2009) Relocation and waveform modeling of the 1924 Orotina, Costa Rica, earthquake (MS 7.0). Tectonophysics 479:197–202. doi: 10.1016/j.tecto.2009.08.010 CrossRefGoogle Scholar
  28. Fernández M, Molina E, Havskov J, Atakan K (2000) Tsunamis and tsunami hazards in Central America. Nat Hazards 22:91–116. doi: 10.1023/A:1008102600622 CrossRefGoogle Scholar
  29. Franchello G (2010) Shoreline tracking and implicit source terms for a well balanced inundation model. Int J Numer Methods Fluids 63:1123–1146Google Scholar
  30. Geist EL (2009) Phenomenology of tsunamis: statistical properties from generation to runup. In: In Geophysics RDBT-A (ed) Advances in geophysics. Elsevier, Amsterdam, pp 107–169Google Scholar
  31. Geist EL, Bilek SL (2001) Effect of depth-dependent shear modulus on tsunami generation along subduction zones. Geophys Res Lett 28:1315–1318. doi: 10.1029/2000GL012385 CrossRefGoogle Scholar
  32. Goldfinger C, Ikeda Y, Yeats RS, Ren J (2013) Superquakes and supercycles. Seismol Res Lett 84:24–32. doi: 10.1785/0220110135 CrossRefGoogle Scholar
  33. Güendel F (1986) Seismotectonics of Costa Rica: an analytical view of the southern terminus of the Middle America Trench. Dissertation University of California, Santa CruzGoogle Scholar
  34. Güendel F, Protti M (1998) Sismicidad y sismotectónica de América Central. Fis la Tierra 10:19–51Google Scholar
  35. Hanks TC, Kanamori H (1979) A Moment Magnitude Scale. J Geophys Res 84:2348–2350CrossRefGoogle Scholar
  36. Hayes GP, Wald DJ, Johnson R (2012) A three-dimensional model of global subduction zone geometries. J Geophys Res 117:8524B01302. doi: 10.1029/2011JB008524 Google Scholar
  37. Heuret A, Conrad CP, Funiciello F et al (2012) Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain. Geophys Res Lett 39. doi: 10.1029/2011GL050712
  38. Hill EM, Borrero JC, Huang Z et al (2012) The 2010 M w 7.8 Mentawai earthquake: very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. J Geophys Res 117:B06402. doi: 10.1029/2012JB009159 Google Scholar
  39. Hinz K, VonHuene R, Ranero CR (1996) Tectonic structure of the convergent Pacific margin offshore Costa Rica from multichannel seismic reflection data. Tectonics 1:54–66CrossRefGoogle Scholar
  40. Hoechner A, Ge M, Babeyko AY, Sobolev SV (2013) Instant tsunami early warning based on real time GPS–Tohoku 2011 case study. Nat Hazards Earth Syst Sci 13:1285–1292. doi: 10.5194/nhess-13-1285-2013
  41. Husen S, Kissling E (2002) Tomographic evidence for a subducted seamount beneath the Gulf of Nicoya, Costa Rica: the cause of the 1990 M w = 7.0 Gulf of Nicoya earthquake. Geophys Res Lett 29:1–4CrossRefGoogle Scholar
  42. Ihmlé PF (1996) Monte Carlo slip inversion in the frequency domain: application to the 1992 Nicaragua slow earthquake. Geophys Res Lett 23:913–916. doi: 10.1029/96GL00872 CrossRefGoogle Scholar
  43. Imamura F, Shuto N, Ide S et al (1993) Estimate of the tsunami sources of the 1992 Nicaraguan earthquake from tsunami data. Geophys Res Lett 20:1515–1518CrossRefGoogle Scholar
  44. IUGG/IOC (1997) Time Project. Numerical method of tsunami simulation with the leap-frog scheme IOC Manuals and Guides No. 35Google Scholar
  45. Jiang Y, Wdowinski S, Dixon TH et al (2012) Slow slip events in Costa Rica detected by continuous GPS observations, 2002–2011. Geochem Geophys Geosyst 13. doi:  10.1029/2012GC004058
  46. Kanamori H (1972) Mechanism of tsunami earthquakes. Phys Earth Planet Inter 6:346–359. doi: 10.1016/0031-9201(72)90058-1 CrossRefGoogle Scholar
  47. Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65:1073–1095Google Scholar
  48. Kanoglu U, Synolakis CE (1998) Long wave runup on piecewise linear topographies. J Fluid Mech 374:1–28. doi: 10.1017/S0022112098002468 CrossRefGoogle Scholar
  49. Kikuchi M, Kanamori H (1995) Source characteristics of the 1992 Nicaragua tsunami earthquake inferred from teleseismic body waves. Pure Appl Geophys (Pageoph) 144:441–453. doi: 10.1007/BF00874377 CrossRefGoogle Scholar
  50. Kodaira S, No T, Nakamura Y et al (2012) Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake. Nat Geosci 5:646–650CrossRefGoogle Scholar
  51. Konca AO, Avouac JP, Sladen A et al (2008) Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456:631–635. doi: 10.1038/nature07572 CrossRefGoogle Scholar
  52. LaFemina P, Dixon TH, Govers R et al (2009) Fore-arc motion and Cocos Ridge collision in Central America. Geochem Geophys Geosyst 10:1–21. doi: 10.1029/2008GC002181 CrossRefGoogle Scholar
  53. Lay T, Bilek S (2007) Anomalous earthquake ruptures at shallow depths on subduction zone megathrusts. In: Dixon T, Moore J (eds) Seism. Zo. subduction thrust faults. Columbia University Press, New York, pp 476–511Google Scholar
  54. Lay T, Ammon CJ, Kanamori H et al (2010) The 2009 Samoa–Tonga great earthquake triggered doublet. Nature 466:964–968. doi: 10.1038/nature09214 CrossRefGoogle Scholar
  55. Lay T, Ammon CJ, Kanamori H et al (2011) The 25 October 2010 Mentawai tsunami earthquake (M w 7.8) and the tsunami hazard presented by shallow megathrust ruptures. Geophys Res Lett 38. doi: 10.1029/2010GL046552
  56. Lefeldt M, Grevemeyer I (2008) Centroid depth and mechanism of trench-outer rise earthquakes. Geophys J Int 172:240–251. doi: 10.1111/j.1365-246X.2007.03616.x CrossRefGoogle Scholar
  57. Linkimer L, Alvarado G (2014) Distribución espacio-temporal de la sismicidad sentida en Costa Rica (1976–2013) en el marco histórico del 30 aniversario (1982–2012) de la Red Sismológica Nacional (RSN-ICE). Rev Geológica América Cent Sp. 45–71. doi: 10.15517/rgac.v0i0.16569
  58. Lorito S, Tiberti MM, Basili R et al (2008) Earthquake-generated tsunamis in the Mediterranean Sea: Scenarios of potential threats to Southern Italy. J Geophys Res 113:B01301Google Scholar
  59. Loveless JP, Meade BJ (2011) Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 M w = 9.0 Tohoku-oki earthquake. Geophys Res Lett 38:L17306. doi: 10.1029/2011GL048561 CrossRefGoogle Scholar
  60. Marshall JS, Anderson RS (1995) Quaternary uplift and seismic cycle deformation, Peninsula de Nicoya, Costa Rica. Geol Soc Am Bull 107:463–473CrossRefGoogle Scholar
  61. Marshall JS, Morris E, Lafromboise EJ, et al (2012) Morphotectonic Segmentation along the Nicoya Peninsula Seismic Gap. Eos, Trans Am Geophys Union, MoA, Abs T53A-1121Google Scholar
  62. McCaffrey R (2008) Global frequency of magnitude 9 earthquakes. Geology 36:263. doi: 10.1130/G24402A.1 CrossRefGoogle Scholar
  63. McIntosh KD, Silver EA, Ahmed I et al (2007) The Nicaragua convergent margin. In: Dixon T, Moore J (eds) seism. Zo. subduction thrust faults. Columbia University Press, New York, pp 257–287Google Scholar
  64. Molina E (1997) Tsunami catalogue for Central America 1539–1996. Reduction of natural disasters in Central America. University of Bergen Technical Report No. II 1-04Google Scholar
  65. Montero W (1986) Periodos de recurrencia-intraplaca. Rev Geológica América Cent 5:35–72Google Scholar
  66. Moreno M, Rosenau M, Oncken O (2010) 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature 467:198–202CrossRefGoogle Scholar
  67. Müller RD, Landgrebe TCW (2012) The link between great earthquakes and the subduction of oceanic fracture zones. Solid Earth 3:447–465. doi: 10.5194/se-3-447-2012 CrossRefGoogle Scholar
  68. Newman AV, Okal EA (1998) Teleseismic estimates of radiated seismic energy: the E/M0 discriminant for tsunami earthquakes. J Geophys Res Solid Earth 103:26885–26898. doi: 10.1029/98JB02236 CrossRefGoogle Scholar
  69. Newman AV, Schwartz SY, González V et al (2002) Along-strike variability in the seismogenic zone below Nicoya Peninsula, Costa Rica. Geophys Res Lett 29:1977. doi: 10.1029/2002GL015409 CrossRefGoogle Scholar
  70. Newman AV, Hayes G, Wei Y, Convers J (2011) The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation. Geophys Res Lett. doi: 10.1029/2010GL046498 Google Scholar
  71. NGDC/WDS (2015) National Geophysical Data Center, World Data Service. Global Historical Tsunami Database. National Geophysical Data Center, NOAA. In: Access on 15.01.2015.
  72. Nishenko SP (1991) Circum-Pacific seismic potential: 1989–1999. Pageoph 135:169–259CrossRefGoogle Scholar
  73. Noda H, Lapusta N (2010) Three-dimensional earthquake sequence simulations with evolving temperature and pore pressure due to shear heating: effect of heterogeneous hydraulic diffusivity. J Geophys Res 115:B12314. doi: 10.1029/2010JB007780 CrossRefGoogle Scholar
  74. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154Google Scholar
  75. Okal EA, Synolakis CE, Kalligeris N (2010) Tsunami simulations for regional sources in the South China and adjoining seas. Pure Appl Geophys 168:1153–1173. doi: 10.1007/s00024-010-0230-x CrossRefGoogle Scholar
  76. Ortiz M, Fernández Arce M, Rojas W (2001) Análisis de riesgo de inundación por tsunamis en Puntarenas, Costa Rica. GEOS 21:108–113Google Scholar
  77. Outerbridge KC, Dixon TH, Schwartz SY et al (2010) A tremor and slip event on the Cocos-Caribbean subduction zone as measured by a global positioning system (GPS) and seismic network on the Nicoya Peninsula, Costa Rica. J Geophys Res Solid Earth. doi:  10.1029/2009JB006845
  78. Pacheco JF, Sykes R, Scholz H (1993) Nature of seismic coupling along simple plate boundaries of the subduction type. J Geophys Res 98:14133–14159CrossRefGoogle Scholar
  79. Protti M, Güendel F, McNally K (1995a) Correlation between the age of the subducting Cocos Plateand the geometry of the Wadati-Benioff zone under Nicaragua and Costa Rica. Geol. Tecton. Dev. Caribb. Plate Bound. South. Cent. Am., Special Pa. Geological Society of America, Boulder, Colorado, pp 309–326Google Scholar
  80. Protti M, McNally K, Pacheco JF et al (1995b) The March 25, 1990 (M w = 7.0, ML = 6.8), earthquake at the entrance of the Nicoya Gulf, Costa Rica: its prior activity, foreshocks, aftershocks, and triggered seismicity. J Geophys Res 100:345–358Google Scholar
  81. Protti M, Güendel F, Malavassi E (2001) Evaluación del potencial sísmico de la Península de Nicoya. Editorial Fundacion UNA, Heredia, Costa RicaGoogle Scholar
  82. Protti M, González V, Kato T et al (2004) A creep event on the shallow interface of the Nicoya Peninsula, Costa Rica Seismogenic Zone. Am Geophys Union, Fall Meet. Abstr. S41D-07Google Scholar
  83. Protti M, Gonzalez V, Newman AV et al (2014) Nicoya earthquake rupture anticipated by geodetic measurement of the locked plate interface. Nat Geosci 7:117–121. doi: 10.1038/ngeo2038 CrossRefGoogle Scholar
  84. Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373. doi: 10.1038/nature01961 CrossRefGoogle Scholar
  85. Ranero CR, von Huene R, Weinrebe W, Barckhausen U (2007) Convergent margin tectonics: a marine perspective. In: Bundschuh J, Alvarado GE (eds) Cent. Taylor and Francis, Am Geol Resour Hazards, pp 239–265Google Scholar
  86. Rojas W, Bungum H, Lindholm C (1993) Historical and recent earthquakes in Central America. Rev Geol Am Cent 16:5–22Google Scholar
  87. Rojas W, Camacho E, Marroquin G et al (2013) Evolution of the earthquake catalog in Central America. Meet Am AGU, Mex. S52A–08Google Scholar
  88. Ryan WBF, Carbotte SM, Coplan JO et al (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst. doi: 10.1029/2008GC002332 Google Scholar
  89. Sallarès V, Meléndez A, Prada M et al (2013) Overriding plate structure of the Nicaragua convergent margin: relationship to the seismogenic zone of the 1992 tsunami earthquake. Geochem Geophys Geosyst 14:3436–3461. doi: 10.1002/ggge.20214 CrossRefGoogle Scholar
  90. Satake K (1995) Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure Appl Geophys PAGEOPH 144:455–470. doi: 10.1007/BF00874378 CrossRefGoogle Scholar
  91. Schellart WP, Rawlinson N (2013) Global correlations between maximum magnitudes of subduction zone interface thrust earthquakes and physical parameters of subduction zones. Phys Earth Planet Inter 225:41–67. doi: 10.1016/j.pepi.2013.10.001 CrossRefGoogle Scholar
  92. Schwartz SY, Deshon HR (2007) Distinct updip limits to geodetic locking and microseismicity at the northern Costa Rica seismogenic zone. In: Dixon TH, Moore JC (eds) seism. Zo. subduction thrust faults. Columbia University Press, New York, pp 576–599Google Scholar
  93. Storchak DA, Di Giacomo D, Bondár I et al (2013) Public release of the ISC–GEM global instrumental earthquake catalogue (1900–2009). Seismol Res Lett 84:810–815. doi: 10.1785/0220130034 CrossRefGoogle Scholar
  94. Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismol Res Lett 81:941–950. doi: 10.1785/gssrl CrossRefGoogle Scholar
  95. Tajima F, Kikuchi M (1995) Tectonic implications of the seismic ruptures associated with the 1983 and 1991 Costa Rica earthquakes. Geol Soc Am Spec Pap 295:327–340. doi: 10.1130/SPE295-p327 Google Scholar
  96. Tinti S, Armigliato A (2003) The use of scenarios to evaluate the tsunami impact in southern Italy. Mar Geol 199:221–243. doi: 10.1016/S0025-3227(03)00192-0 CrossRefGoogle Scholar
  97. Tristán F (1916) The Costa Rica earthquake of February 27, 1916. Bull Seismol Soc Am 6:232–235Google Scholar
  98. Ulutas E (2013) Comparison of the seafloor displacement from uniform and non-uniform slip models on tsunami simulation of the 2011 Tohoku-Oki earthquake. J Asian Earth Sci 62:568–585. doi: 10.1016/j.jseaes.2012.11.007 CrossRefGoogle Scholar
  99. Ulutas E, Inan A, Annunziato A (2012) Web-based tsunami early warning system: A case study of the 2010 Kepulaunan Mentawai Earthquake and Tsunami. Nat Hazards Earth Syst Sci 12:1855–1871. doi: 10.5194/nhess-12-1855-2012 CrossRefGoogle Scholar
  100. Ureña F (2005) Simulación de un tsunami eventual frente a las costas de la Península de Nicoya y su influencia en el Golfo de Nicoya. Repert Científico la Esc Ciencias Exactas y Nat la UNED 9:48–54Google Scholar
  101. Vannucchi P, Scholl DW, Meschede M, McDougall-Reid K (2001) Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica: combined implications from ODP Leg 170, seismic offshore data, and regional geology of the Nicoya Peninsula. Tectonics 20:649–668. doi: 10.1029/2000TC001223 CrossRefGoogle Scholar
  102. VonHuene R, Ranero CR, Weinrebe W, Hinz K (2000) Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American. Tectonics 19:314–334CrossRefGoogle Scholar
  103. Walter JI, Schwartz SY, Protti JM, Gonzalez V (2011) Persistent tremor within the northern Costa Rica seismogenic zone. Geophys Res Lett 38:L01307. doi: 10.1029/2010GL045586 CrossRefGoogle Scholar
  104. Walter JI, Schwartz SY, Protti M, Gonzalez V (2013) The synchronous occurrence of shallow tremor and very low frequency earthquakes offshore of the Nicoya Peninsula, Costa Rica. Geophys Res Lett 40:1517–1522. doi: 10.1002/grl.50213 CrossRefGoogle Scholar
  105. Wang K, Bilek SL (2011) Do subducting seamounts generate or stop large earthquakes? Geology 39:819–822. doi: 10.1130/G31856.1 CrossRefGoogle Scholar
  106. Wang K, Bilek SL (2014) Fault creep caused by subduction of rough seafloor relief. Tectonophysics 610:1–24. doi: 10.1016/j.tecto.2013.11.024 CrossRefGoogle Scholar
  107. Werner R, Hoernle K, van den Bogaard P et al (1999) Drowned 14-m.y. old Galapagos archipielago off the coast of Costa Rica: implications for tectonic and evolutionary models. Geol Soc London Spec Publ 27:499–502Google Scholar
  108. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys Union 79:579. doi: 10.1029/98EO00426 CrossRefGoogle Scholar
  109. Ye S, Bialas J, Flueh ER et al (1996) Custal structure of the Middle American Trench off Costa Rica from wide-angle seismic data. Tectonics 15:1006–1021CrossRefGoogle Scholar
  110. Ye L, Lay T, Kanamori H (2013) Large earthquake rupture process variations on the Middle America megathrust. Earth Planet Sci Lett 381:147–155. doi: 10.1016/j.epsl.2013.08.042 CrossRefGoogle Scholar
  111. Yue H, Lay T, Schwartz SY et al (2013) The 5 September 2012 Nicoya, Costa Rica Mw 7.6 earthquake rupture process from joint inversion of high-rate GPS, strong-motion, and teleseismic P wave data and its relationship to adjacent plate boundary interface properties. J Geophys Res Solid Earth 118:5453–5466. doi: 10.1002/jgrb.50379 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Geodynamic Modeling SectionHelmholtz Centre Potsdam GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations