Advertisement

Natural Hazards

, Volume 79, Issue 3, pp 1531–1548 | Cite as

New prospects for the spatialisation of technological risks by combining hazard and the vulnerability of assets

  • Didier SotoEmail author
  • Florent Renard
Original Paper

Abstract

Risk is currently considered as a function of hazard and the exposure of assets, depending on their vulnerability, on an area within which a disaster could occur. However, in France, technological risk management is shared between a technician management focused on hazard, where assets are identified only from direct exposure, and vulnerability assessment of the assets, which are rarely incorporated in their entirety. Early studies, which tried to take into account these two parts of management, are limited, as a result of incomplete identification of assets and their vulnerabilities. An absence or an inadequate combination between hazard and the vulnerability of assets is also frequently observed. Indeed, they are mainly based on the combination of territorial vulnerability through quantification of the hazard, which is not unproblematic: the characterisation of the hazard, translated into quality criteria in terms of technological hazards, is not a linear relation. To solve these problems, a geographical information system-based methodology is therefore suggested in this study, where hazard perimeters are combined with the vulnerabilities of the exposed assets in a qualitative way. It is based on a process that uses geospatial operations and a specific semiology to provide an efficient mapping of the global risk. This methodology could be applied to any kind of territory, hazard and assets, to produce operational and useful knowledge of technological risk cartography. It can also be considered as a first step to a more global Natech risk assessment, since floods may cause severe damages to the local industrial facilities and trigger major accidents involving human, material and environmental assets.

Keywords

Risk assessment Hazardous materials transportation Industrial accidents Territorial vulnerability Geographical information system Analytic hierarchy process 

References

  1. Antonioni G, Landucci G, Necci A, Gheorgiu D, Cozzani V (2015) Quantitative assessment of risk due to NaTech scenarios caused by floods. Reliab Eng Syst Saf. doi: 10.1016/j.ress.2015.05.020 Google Scholar
  2. Armenakis C, Nirupama N (2013) Prioritization of disaster risk in a community using GIS. Nat Hazards 66:15–29. doi: 10.1007/s11069-012-0167-8 CrossRefGoogle Scholar
  3. Bubbico R, Di Cave S, Mazzarotta B (2004) Risk analysis for road and rail transport of hazardous materials: a GIS approach. J Loss Prev Process Ind 17:483–488. doi: 10.1016/j.jlp.2004.08.011 CrossRefGoogle Scholar
  4. Bubbico R, Di Cave S, Mazzarotta B, Silvetti B (2009) Preliminary study on the transport of hazardous materials through tunnels. Accid Anal Prev 41:1199–1205. doi: 10.1016/j.aap.2008.05.011 CrossRefGoogle Scholar
  5. Caradot N, Granger D, Chapgier J, Cherqui F, Chocat B (2011) Urban flood risk assessment using sewer flooding databases. Water Sci Technol 64:832–840. doi: 10.1007/s11069-012-0167-8 CrossRefGoogle Scholar
  6. D’Ercole R, Metzger P (2009) La vulnérabilité territoriale: une nouvelle approche des risques en milieu urbain. Cybergeo Eur J Geogr. doi: 10.4000/cybergeo.22022 Google Scholar
  7. El Hajj C, Piatyszek E, Tardy A, Laforest V (2015) Development of generic bow-tie diagrams of accidental scenarios triggered by flooding of industrial facilities (Natech). J Loss Prev Process Ind 36:72–83. doi: 10.1016/j.jlp.2015.05.003 CrossRefGoogle Scholar
  8. Fedeski M, Gwilliam J (2007) Urban sustainability in the presence of flood and geological hazards: the development of a GIS-based vulnerability and risk assessment methodology. Landsc Urban Plan 83:50–61. doi: 10.1016/j.landurbplan.2007.05.012 CrossRefGoogle Scholar
  9. Fuchs S, Birkmann J, Glade T (2012) Vulnerability assessment in natural hazard and risk analysis: current approaches and future challenges. Nat Hazards 64:1969–1975. doi: 10.1007/s11069-012-0352-9 CrossRefGoogle Scholar
  10. Garbolino E, Lachtar D, Sacile R, Bersani C (2013) Vulnerability and resilience of the territory concerning risk of dangerous goods transportation (DGT): proposal of a spatial model. Chem Eng Trans 32:91–96. doi: 10.3303/CET1332016 Google Scholar
  11. Girgin S, Krausmann E (2013) RAPID-N: rapid Natech risk assessment and mapping framework. J Loss Prev Process Ind 26:949–960. doi: 10.1016/j.jlp.2013.10.004 CrossRefGoogle Scholar
  12. Godoy SM, Santa Cruz ASM, Scenna NJ (2007) STRRAP system—a software for hazardous materials risk assessment and safe distances calculation. Reliab Eng Syst Saf 92:847–857. doi: 10.1016/j.ress.2006.02.012 CrossRefGoogle Scholar
  13. Granger D (2009) Méthodologie d’aide à la gestion durable des eaux urbaines. Dissertation, INSA de LyonGoogle Scholar
  14. Griot C (2007) Des territoires vulnérables face à un risque majeur: le transport de matières dangereuses. Géocarrefour 82:51–63. doi: 10.4000/geocarrefour.1459 CrossRefGoogle Scholar
  15. Ineris (2003) Élaboration d’un modèle d’évaluation quantitative des risques pour le transport multimodal des marchandises dangereusesGoogle Scholar
  16. Ineris (2004) ARAMIS Développement d’une méthode intégrée d’analyse des risques pour la prévention des accidents majeursGoogle Scholar
  17. Kappes MS, Papathoma-Köhle M, Keiler M (2012) Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl Geogr 32:577–590. doi: 10.1016/j.apgeog.2011.07.002 CrossRefGoogle Scholar
  18. Kaźmierczak A, Cavan G (2011) Surface water flooding risk to urban communities: analysis of vulnerability, hazard and exposure. Landsc Urban Plan 103:185–197. doi: 10.1016/j.landurbplan.2011.07.008 CrossRefGoogle Scholar
  19. Kienberger S, Lang S, Zeil P (2009) Spatial vulnerability units—expert-based spatial modelling of socio-economic vulnerability in the Salzach catchment, Austria. Nat Hazards Earth Syst Sci 9:767–778. doi: 10.5194/nhess-9-767-2009 CrossRefGoogle Scholar
  20. Koks EE, Jongman B, Husby TG, Botzen WJW (2015) Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environ Sci Policy 47:42–52. doi: 10.1016/j.envsci.2014.10.013 CrossRefGoogle Scholar
  21. Liu X, Saat MR, Barkan CPL (2014) Probability analysis of multiple-tank-car release incidents in railway hazardous materials transportation. J Hazard Mater 276:442–451. doi: 10.1016/j.jhazmat.2014.05.029 CrossRefGoogle Scholar
  22. Lozano A, Muñoz A, Macias L, Antun JB (2011) Hazardous materials transportation in Mexico City: chlorine and gasolines cases. Transp Res Part C Emerg Technol 5:779–789. doi: 10.1016/j.trc.2010.09.001 CrossRefGoogle Scholar
  23. Lummen NS, Yamada F (2014) Implementation of an integrated vulnerability and risk assessment model. Nat Hazards 73:1085–1117. doi: 10.1007/s11069-014-1123-6 CrossRefGoogle Scholar
  24. Marzo E, Busini V, Rota R (2015) Definition of a short-cut methodology for assessing the vulnerability of a territory in natural–technological risk estimation. Reliab Eng Syst Saf. doi: 10.1016/j.ress.2014.07.026 Google Scholar
  25. Ministère de l’Écologie, du Développement et de l’Aménagement Durables-MEDAD (2008) Le plan de prévention des risques technologiques (PPRT)Google Scholar
  26. Ministère de l’Écologie et du Développement Durable-MEDD (2002) Le transport de matières dangereusesGoogle Scholar
  27. Necci A, Argenti F, Landucci G, Cozzani V (2014) Accident scenarios triggered by lightning strike on atmospheric storage tanks. Reliab Eng Syst Saf 127:30–46. doi: 10.1016/j.ress.2014.02.005 CrossRefGoogle Scholar
  28. Picou JS (2009) Katrina as Natech disaster: toxic contamination and long term risks for residents of New Orleans. J Appl Soc Sci 3:39–55. doi: 10.1177/193672440900300204 Google Scholar
  29. Propeck-Zimmermann E, Saint-Gérand T, Bonnet E (2007) Probabilités, risques et gestion territoriale: champs d’action des PPRT. Géocarrefour 82:65–76. doi: 10.4000/geocarrefour.1473 CrossRefGoogle Scholar
  30. Rebotier J (2007) Quel rôle pour les institutions dans la résilience? Une interprétation à travers le cas de Caracas. «Construire la résilience des territoires» (IRD-UCV), ValparaisoGoogle Scholar
  31. Reghezza-Zitt M (2009) Réflexions autour de la vulnérabilité. Définition d’une approche intégrée à partir du cas de la métropole francilienne. In: Becerra S, Peltier A (eds) Risques et environnement: recherches interdisciplinaires sur la vulnérabilité des sociétés. L’Harmattan, Paris, pp 417–428Google Scholar
  32. Renard F (2010) Le risque pluvial en milieu urbain. De la caractérisation de l’aléa à l’évaluation de la vulnérabilité: le cas du Grand Lyon. Dissertation, Université Jean Moulin Lyon 3Google Scholar
  33. Renard F, Chapon PM (2010) Une méthode d’évaluation de la vulnérabilité urbaine appliquée à l’agglomération lyonnaise. L’Espace géographique 39:35–50Google Scholar
  34. Reniers GLL, Dullaert W (2013) A method to assess multi-modal Hazmat transport security vulnerabilities: Hazmat transport SVA. Transp Policy 28:103–113. doi: 10.1016/j.tranpol.2012.05.002 CrossRefGoogle Scholar
  35. Rufat S (2007) L’estimation de la vulnérabilité urbaine, un outil pour la gestion du risque. Géocarrefour 82:7–16. doi: 10.4000/geocarrefour.1397 CrossRefGoogle Scholar
  36. Saat MR, Werth CJ, Schaeffer D, Yoon H, Barkan CPL (2014) Environmental risk analysis of hazardous material rail transportation. J Hazard Mater 264:560–569. doi: 10.1016/j.jhazmat.2013.10.051 CrossRefGoogle Scholar
  37. Saaty TL (1980) The analytic hierarchy process: planning, priority, setting, resource allocation. Mc Graw-Hill, New-YorkGoogle Scholar
  38. Sengul H, Santella N, Steinberg LJ, Cruz AM (2012) Analysis of hazardous material releases due to natural hazards in the United States. Disasters 36:723–743. doi: 10.1111/j.1467-7717.2012.01272 CrossRefGoogle Scholar
  39. Shi W, Zeng W (2013) Genetic k-means clustering approach for mapping human vulnerability to chemical hazards in the industrialized city: a case study of Shanghai, China. Int J Environ Res Public Health 10:2578–2595. doi: 10.3390/ijerph10062578 CrossRefGoogle Scholar
  40. Soto D, Renard F, Magnon A (2014) Evaluating environmental risk to technological hazards, using GIS spatial decision making: application to the Greater Lyon (France). Lect Notes Comput Sci 8581:15–25. doi: 10.1007/978-3-319-09150-1_2 CrossRefGoogle Scholar
  41. Tomasoni AM, Garbolino E, Rovatti M, Sacile R (2010) Risk evaluation of real-time accident scenarios in the transport of hazardous material on road. Manag Environ Qual 21:695–711. doi: 10.1108/14777831011067962 CrossRefGoogle Scholar
  42. Topuz E, Talinli I, Aydin E (2011) Integration of environmental and human health risk assessment for industries using hazardous materials: a quantitative multi criteria approach for environmental decision makers. Environ Int 37:393–403. doi: 10.1016/j.envint.2010.10.013 CrossRefGoogle Scholar
  43. Van Raemdonck K, Macharis C, Mairesse O (2013) Risk analysis system for the transport of hazardous materials. J Saf Res 45:55–63. doi: 10.1016/j.jsr.2013.01.002 CrossRefGoogle Scholar
  44. Veyret Y, Reghezza M (2006) Vulnérabilité et risques. L’approche récente de la vulnérabilité. Ann Min 43:9–13Google Scholar
  45. Yang J, Li F, Zhou J, Zhang L, Huang L, Bi J (2010) A survey on hazardous materials accidents during road transport in China from 2000 to 2008. J Hazard Mater 184:647–653. doi: 10.1016/j.jhazmat.2010.08.085 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.UMR 5600 EVSUniversité Jean Moulin Lyon 3Lyon Cedex 07France

Personalised recommendations