Natural Hazards

, Volume 79, Issue 2, pp 1015–1038 | Cite as

Process-based design flood estimation in ungauged basins by conditioning model parameters on regional hydrological signatures

  • Daniela Biondi
  • Davide Luciano De LucaEmail author
Original Paper


The use of rainfall–runoff models constitutes an alternative to statistical approaches (such as at-site or regional flood frequency analysis) for design flood estimation and represents an answer to the increasing need for synthetic design hydrographs associated with a specific return period. Nevertheless, the lack of streamflow observations and the consequent high uncertainty associated with parameters estimation usually pose serious limitations to the use of process-based approaches in ungauged catchments, which in contrast represent the majority in practical applications. This work presents a Bayesian procedure that, for a predefined rainfall–runoff model, allows for the assessment of posterior parameters distribution, using limited and uncertain information available about the response of ungauged catchments, i.e. the regionalized first three L-moments of annual streamflow maxima. The methodology is tested for a catchment located in southern Italy and used within a Monte Carlo scheme to obtain design flood values and simulation uncertainty bands through both event-based and continuous simulation approaches. The obtained results highlight the relevant reduction in uncertainty bands associated with simulated peak discharges compared to those obtained considering a prior uniform distribution for model parameters. A direct impact of uncertainty in regional estimates of hydrological signatures on posterior parameters distribution is also evident. For the selected case study, continuous simulation, generally, better matches the estimates of the statistical flood frequency analysis.


Ungauged basins Design flood estimation Bayesian inference Hydrological signatures Event-based approach Continuous simulation 


  1. Alfieri L, Laio F, Claps P (2008) A simulation experiment for optimal design hyetograph selection. Hydrol Process 22:813–820CrossRefGoogle Scholar
  2. Almeida S, Bulygina N, McIntyre N, Wagener T, Buytaert W (2012) Predicting flows in ungauged catchments using correlated information sources. BHS National Symposium Proceedings, DundeeCrossRefGoogle Scholar
  3. Aronica GT, Candela A (2007) Derivation of flood frequency curves in poorly gauged Mediterranean catchments using a simple stochastic hydrological rainfall-runoff model. J Hydrol 347(1–2):132–142CrossRefGoogle Scholar
  4. Biondi D, Claps P, Cruscomagno F, De Luca DL, Fiorentino M, Ganora D, Gioia A, Iacobellis V, Laio F, Manfreda S, Versace P (2012) Dopo il VAPI: la valutazione delle massime portate al colmo di piena nell’esperienza del POR Calabria (in Italian). In: Proceedings of XXXIII Italian national conference on hydraulics and hydraulic engineering, Brescia, Italy, 10–15 September 2012Google Scholar
  5. Blazkova S, Beven KJ (2002) Flood frequency estimation by continuous simulation for a catchment treated as ungauged (with uncertainty). Water Resour Res. doi: 10.1029/2001WR000500 Google Scholar
  6. Blazkova S, Beven K (2009) A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic. Water Resour Res 45: W00B16Google Scholar
  7. Blöschl G, Sivalapan M, Wagener T, Viglione A, Savenije H (2013) Runoff prediction in ungauged basins. Synthesis across processes, places and scales. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. Boughton W, Droop O (2003) Continuous simulation for design flood estimation—a review. Environ Modell Softw 18(49):309–318CrossRefGoogle Scholar
  9. Box G, Tiao G (1973) Bayesian inference in statistical analysis. Addison-Wesley, ReadingGoogle Scholar
  10. Bulygina N, McIntyre N, Wheater HS (2009) Conditioning rainfall-runoff model parameters for ungauged catchments and land management impacts analysis. Hydrol Earth Syst Sci 13:893–904. doi: 10.5194/hess-13-893-2009 CrossRefGoogle Scholar
  11. Bulygina N, McIntyre N, Wheater H (2011) Bayesian conditioning of a rainfall-runoff model for predicting flows in ungauged catchments and under land use changes. Water Resour Res 47:W02503. doi: 10.1029/2010WR009240 Google Scholar
  12. Bulygina N, Ballard C, McIntyre N, O’Donnell G, Wheater H (2012) Integrating different types of information into hydrological model parameter estimation: application to ungauged catchments and land use scenario analysis. Water Resour Res. doi: 10.1029/2011WR011207 Google Scholar
  13. Cameron D, Beven K, Tawn J, Blazkova S, Naden P (1999) Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty). J Hydrol 219:169–187. doi: 10.1016/S0022-1694(99)00057-8 CrossRefGoogle Scholar
  14. Cameron D, Beven K, Naden P (2000) Flood frequency estimation under climate change (with uncertainty). Hydrol Earth Syst Sci 4(3):393–405CrossRefGoogle Scholar
  15. Castiglioni S, Lombardi L, Toth E, Castellarin A, Montanari A (2010) Calibration of rainfall-runoff models in ungauged basins: a regional maximum likelihood approach. Adv Water Resour 33(10):1235–1242CrossRefGoogle Scholar
  16. Claps P, Laio F (2008). Aggiornamento delle procedure delle procedure di valutazione delle piene in Piemonte, con particolare riferimento ai bacini sottesi da invasi artificiali. VOLUME I: Costruzione e applicazione delle procedure di stima delle portate al colmo di piena (in Italian). Technical report of Department of Hydraulics, Transport and Civil Infrastructures, Polytechnic of Turin, 306 ppGoogle Scholar
  17. Claps P, Fiorentino M, Sole A, Iacobellis V, Laio F, Manfreda S, Margiotta MR (2010). Attività A Livello 2:Modelli statistici regionali (in italian). Technical report of the Project POR-Calabria 2000–2006 “Studio e sperimentazione di metodologie e tecniche per la mitigazione del rischio idrogeologico”. July 2010Google Scholar
  18. De Luca DL (2014) Analysis and modelling of rainfall fields at different resolutions in southern Italy. Hydrol Sci J 59(8):1536–1558. doi: 10.1080/02626667.2014.926013 CrossRefGoogle Scholar
  19. De Michele C, Salvadori G (2002) On the derived flood frequency distribution: analytical formulation and the influence of antecedent soil moisture condition. J Hydrol 262:245–258CrossRefGoogle Scholar
  20. de Paola F, Ranucci A, Feo A (2013) Antecedent moisture condition (SCS) frequency assessment: a case study in southern Italy. Irrig Drain 62:61–71. doi: 10.1002/ird.1801 CrossRefGoogle Scholar
  21. Eagleson PS (1972) Dynamics of flood frequency. Water Resour Res 8(4):878–898CrossRefGoogle Scholar
  22. Efstratiadis A, Koussis AD, Koutsoyiannis D, Mamassis N (2014) Flood design recipes vs. reality: Can predictions for ungauged basins be trusted? Nat Hazard Earth Sys 14(6):1417–1428. doi: 10.5194/nhess-14-1417-2014 CrossRefGoogle Scholar
  23. Griffis VW, Stedinger JR (2007) The use of GLS regression in regional hydrologic analyses. J Hydrol 344:82–95CrossRefGoogle Scholar
  24. Grimaldi S, Petroselli A, Serinaldi F (2012a) A continuous simulation model for design-hydrograph estimation in small and ungauged watersheds. Hydrolog Sci J 57(6):1035–1051. doi: 10.1080/02626667.2012.702214 CrossRefGoogle Scholar
  25. Grimaldi S, Petroselli A, Serinaldi F (2012b) Design hydrograph estimation in small and ungauged watersheds: continuous simulation method versus event-based approach. Hydrol Process 26:3124–3134. doi: 10.1002/hyp.8384 CrossRefGoogle Scholar
  26. Grimaldi S, Petroselli A, Romano N (2013) Green-Ampt curve-number mixed procedure as an empirical tool for rainfall-runoff modelling in small and ungauged basins. Hydrol Process 27(8):1253–1264. doi: 10.1002/hyp.9303 CrossRefGoogle Scholar
  27. Gupta HV, Wagener T, Liu Y (2008) Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrol Process 22:3802–3813. doi: 10.1002/hyp.6989 CrossRefGoogle Scholar
  28. Hrachowitz M, Savenije HHG, Blöschl G, McDonnell JJ, Sivapalan M, Pomeroy JW, Arheimer B, Blume T, Clark MP, Ehret U, Fenicia F, Freer JE, Gelfan A, Gupta HV, Hughes DA, Hut RW, Montanari A, Pande S, Tetzlaff D, Troch PA, Uhlenbrook S, Wagener T, Winsemius HC, Woods RA, Zehe E, Cudennec C (2013) A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrolog Sci J 58(6):1198–1255. doi: 10.1080/02626667.2013.803183 CrossRefGoogle Scholar
  29. Joe H (1997) Multivariate models and dependence concepts. Chapman & Hall, New YorkCrossRefGoogle Scholar
  30. Kjeldsen TR (2007) The revitalised FSR/FEH rainfall-runoff method—a user handbook, Flood Estimation Handbook Supplementary Report No. 1, Centre for Ecology and Hydrology, Wallingford. www. Scholar
  31. Laio F, Ganora D, Claps P, Galeati G (2011) Spatially smooth regional estimation of the flood frequency curve (with uncertainty). J Hydrol 408:67–77CrossRefGoogle Scholar
  32. Lamb R (1999) Calibration of a conceptual rainfall-runoff model for flood frequency estimation by continuous simulation. Water Resour Res 35(10):3103–3114. doi: 10.1029/1999WR900119 CrossRefGoogle Scholar
  33. Lamb R (2006) Rainfall-runoff modeling for flood frequency estimation. Encycl Hydrol Sci 11:125Google Scholar
  34. Lombardi L, Toth E, Castellarin A, Montanari A, Brath A (2012) Calibration of a rainfall–runoff model at regional scale by optimising river discharge statistics: Performance analysis for the average/low flow regime. Phys Chem Earth 42–44:77–84CrossRefGoogle Scholar
  35. Loukas A (2002) Flood frequency estimation by a derived distribution procedure. J Hydrol 255(1–4):69–89CrossRefGoogle Scholar
  36. Menabde M, Sivapalan M (2000) Modeling of rainfall time series and extremes using bounded random cascades and levystable distributions. Water Resour Res 36(11):3293–3300. doi: 10.1029/2000WR900197 CrossRefGoogle Scholar
  37. Merz R, Bloschl G (2004) Regionalisation of catchment model parameters. J Hydrol 287(95–123):2004. doi: 10.1016/j.jhydrol.2003.09.028 Google Scholar
  38. Michel C, Andréassian V, Perrin C (2005) Soil conservation service curve number method: How to mend a wrong soil moisture accounting procedure? Water Resour Res. doi: 10.1029/2004WR003191 Google Scholar
  39. Molnar P, Burlando P (2005) Preservation of rainfall properties in stochastic disaggregation by a simple random cascade model. Atmos Res 77:137–151. doi: 10.1016/j.atmosres.2004.10.024 CrossRefGoogle Scholar
  40. Montanari A, Toth E (2007) Calibration of hydrological models in the spectral domain: an opportunity for ungauged basins? Water Resour Res 43:W05434. doi: 10.1029/2006WR005184 Google Scholar
  41. Montgomery DC, Peck EA, Vining GG (2001) Introduction to linear regression analysis, 3rd edn. Wiley, New York. ISBN: 10:0471315656Google Scholar
  42. Moretti G, Montanari A (2008) Inferring the flood frequency distribution for an ungauged basin using a spatially distributed rainfall-runoff model. Hydrol Earth Syst Sci 12:1141–1152. doi: 10.5194/hess-12-1141-2008 CrossRefGoogle Scholar
  43. Nash JE (1957) The form of instantaneous unit hydrograph. Int Assn Sci Hydro Publ No. 51: 546-557, IAHS, GentbruggeGoogle Scholar
  44. Nelsen RB (2006) An introduction to Copulas, 2nd edn. Springer, New YorkGoogle Scholar
  45. Pathiraja S, Westra S, Sharma A (2012) Why continuous simulation? The role of antecedent moisture in design flood estimation. Water Resour Res 48:W06534. doi: 10.1029/2011WR010997 Google Scholar
  46. Reis DS Jr, Stedinger JR, Martins ES (2005) Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resour Res 41:W10419. doi: 10.1029/2004WR003445 Google Scholar
  47. Rogger M, Kohl B, Pirkl H, Viglione A, Komma J, Kirnbauer R, Merz R, Blöschl G (2012) Runoff models and flood frequency statistics for design flood estimation in Austria—Do they tell a consistent story? J Hydrol 456–457:30–43CrossRefGoogle Scholar
  48. Rossi F, Fiorentino M, Versace P (1984) Two-component extreme value distribution for flood frequency analysis. Water Resour Res 20(7):847–856CrossRefGoogle Scholar
  49. Saghafian B, Ghasemi AR, Golian S (2014) Flood frequency analysis based on simulated peak discharges. Nat Hazards 71:403–417CrossRefGoogle Scholar
  50. Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremis in nature An approach using Copulas Water science and technology library, vol 56. Springer, BerlinGoogle Scholar
  51. Seibert J (1999) Regionalisation of parameters for a conceptual rainfall runoff model. Agric For Meteorol 98–99:279–293CrossRefGoogle Scholar
  52. Serinaldi F (2009) A multisite daily rainfall generator driven by bivariate copula-based mixed distributions. J Geophys Res 114:D10103. doi: 10.1029/2008JD011258 CrossRefGoogle Scholar
  53. Sharma A, Mehrotra R (2010) Rainfall generation. American Geophysical Union, pp 215–246. doi: 10.1029/2010GM000973
  54. Sirangelo B, Versace P, De Luca DL (2007) Rainfall nowcasting by at site stochastic model P.R.A.I.S.E. Hydrol Earth. Syst Sci 11(4):1341–1351CrossRefGoogle Scholar
  55. Sivapalan M (2003) Prediction in ungauged basins: a grand challenge for theoretical hydrology. Hydrol Process 17:3163–3170. doi: 10.1002/hyp.5155 CrossRefGoogle Scholar
  56. Stedinger J, Tasker G (1985) Regional hydrologic analysis: 1. Ordinary, weighted, and generalized least squares compared. Water Resour Res 21(9):1421–1432. doi: 10.1029/WR021i009p01421 CrossRefGoogle Scholar
  57. USDA, SCS (1964) National engineering handbook, Sec. 4 Hydrology. USDA, Washington, DCGoogle Scholar
  58. Verhoest NEC, Vandenberghe S, Cabus P, Onof C, Meca-Figueras T, Jameleddine S (2010) Are stochastic point rainfall models able to preserve extreme flood statistics? Hydrol Process 24:3439–3445CrossRefGoogle Scholar
  59. Viglione A, Bloschl G (2009) On the role of storm duration in the mapping of rainfall to flood return periods. Hydrol Earth Syst Sci 13:205–216CrossRefGoogle Scholar
  60. Viviroli D, Mittelbach H, Gurtz J, Weingartner R (2009) Continuous simulation for flood estimation in ungauged catchments of Switzerland—Part II: parameter regionalisation and flood estimation results. J Hydrol 377:208–225CrossRefGoogle Scholar
  61. Wagener T, Montanari A (2011) Convergence of approaches toward reducing uncertainty in predictions in ungauged basins. Water Resour Res 47:W06301. doi: 10.1029/2010WR009469 Google Scholar
  62. Wheater H, Chandler R, Onof C, Isham V, Bellone E, Yang C, Lekkas D, Lourmas G, Segond ML (2005) Spatial-temporal rainfall modelling for flood risk estimation. Stoch Environ Res Risk Assess 19(6):403–416CrossRefGoogle Scholar
  63. Winsemius HC, Schaefli B, Montanari A, Savenije HHG (2009) On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information. Water Resour Res 45:W12422. doi: 10.1029/2009WR007706 Google Scholar
  64. Yadav M, Wagener T, Gupta HV (2007) Regionalization of constraints on expected watershed response behavior. Adv Water Resour 30:1756–1774. doi: 10.1016/j.advwatres.2007.01.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Informatics, Modelling, Electronics and System EngineeringUniversity of CalabriaArcavacata di RendeItaly

Personalised recommendations