Natural Hazards

, Volume 79, Issue 1, pp 1–27 | Cite as

Seismic site effects observed on sediments and basaltic lavas outcropping in a test site of Catania, Italy

  • F. PanzeraEmail author
  • G. Lombardo
  • C. Monaco
  • A. Di Stefano
Original Paper


Ambient noise measurements and a set of 44 moderate magnitude earthquakes were used to study the role of local geology and morphology on the site response of a small hill in the northern part of Catania, on top of which the University Astronomical Observatory is located. The study area has a gentle topography with a flat surface at the top, and it is characterized by a complex sedimentary sequence lying between a clayey basement and an upper volcanic formation. The recorded data were processed through standard spectral ratio and horizontal-to-vertical spectral ratio techniques. Directional effects were also investigated by computing the spectral ratios after rotating the horizontal components of motion and performing polarization analysis. Results of noise and earthquakes analysis, although showing significant differences in amplitude, are comparable in frequency, especially in the sedimentary terrains. On the lava flows, spectral ratios show significant amplification of the vertical component, which appear related to a higher P velocity contrast with underlying soft sediments. Directional effects were identified in two frequency bands (0.2–0.4 and 1.0–10.0 Hz). The effects observed at the lower frequency interval are rather stable, and it spreads out in all the studied area. At higher frequencies, directional effects are variable and mostly observed on the slopes rather than at the hill top. Our findings appear linked to the complex wave field generated by the lithologic heterogeneities existing in the area which seem to be related to the alternation of sediments and basaltic lavas.


Spectral ratios Earthquake records Velocity inversion 1D modelling Seismic wave polarization 



We would like to thank the anonymous reviewers and the Editor Prof. V. Schenk for the useful suggestions that help to improve the quality of the paper. We are also grateful to Prof. S. D’Amico (Physics Department of the University of Malta) that gave us useful advice to improve the English of present paper.


  1. Bard PY (1998) Microtremor measurement: a tool for site effect estimations? In: Proceedings of the 2nd international symposium on the effects of the surface geology on seismic motion ESG98 Yokohama, Japan, pp 1251–1279Google Scholar
  2. Bessason B, Kaynia AM (2002) Site amplification in lava rock on soft sediments. Soil Dyn Earthq Eng 22(7):525–540CrossRefGoogle Scholar
  3. Bindi D, Parolai S, Cara F, Di Giulio G, Ferretti G, Luzi L, Monachesi G, Pacor F, Rovelli A (2009) Site amplifications observed in the Gubbio Basin, Central Italy: hints for lateral propagation effects. Bull Seism Soc Am 99(2A):741–760CrossRefGoogle Scholar
  4. Boatwright J, Fletcher JB, Fumal TE (1991) A general inversion scheme for source, site and propagation characteristics using multiply recorded sets of moderate-sized earthquakes. Bull Seism Soc Am 81:1754–1782Google Scholar
  5. Bonilla LF, Steidl JH, Lindley GT, Tumarkin AG, Archuleta RJ (1997) Site amplification in the San Fernando Valley, California: variability of site effect estimation using S-wave, coda, and H/V methods. Bull Seism Soc Am 87:710–730Google Scholar
  6. Bonnefoy-Claudet S, Cornou C, Bard PY, Cotton F, Moczo P, Kristek J, Fäh D (2006) H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys J Int 167:827–837. doi: 10.1111/j.1365-246X.2006.03154.x CrossRefGoogle Scholar
  7. Bonnefoy-Claudet S, Köhler A, Cornou C, Wathelet M, Bard PY (2008) Effects of Love waves on microtremor H/V ratio. Bull Seism Soc Am 98(1):288–300CrossRefGoogle Scholar
  8. Borcherdt RD (1970) Effects of local geology on ground motion near San Francisco Bay. Bull Seism Soc Am 60(1):29–61Google Scholar
  9. Bouchon M (1973) Effect of topography on surface motion. Bull Seism Soc Am 63:615–632Google Scholar
  10. Bouchon M, Barker JS (1996) Seismic response of a hill: the example of Tarzana, California. Bull Seism Soc Am 86:66–72Google Scholar
  11. Branca S, Coltelli M, De Beni E, Wijbrans J (2007) Geological evolution of Mount Etna volcano (Italy) from earliest products until the first central volcanism (between 500 and 100 ka ago) inferred from geochronological and stratigraphic data. Int J Earth Sci. doi: 10.1007/s00531-006-0152-0 Google Scholar
  12. Burjànek J, Moore JR, Molina FXY, Fäh D (2012) Instrumental evidence of normal mode rock slope vibration. Geophys J Int 188:559–569CrossRefGoogle Scholar
  13. Cara F, Di Giulio G, Rovelli A (2003) A study on seismic noise variations at Colfiorito, Central Italy: implications for the use of H/V spectral ratios. Geophys Res Lett 30:1972–1976CrossRefGoogle Scholar
  14. Castellaro S, Mulargia F (2009) The effect of velocity inversions on H/V. Pure Appl Geophys 166:567–592. doi: 10.1007/s00024-009-0474-5 CrossRefGoogle Scholar
  15. Chavez-Garcia FJ, Sanchez LR, Hatzfeld D (1996) Topographic site effects and HVSR. A comparison between observations and theory. Bull Seism Soc Am 86:1559–1573Google Scholar
  16. Di Alessandro C, Bonilla LF, Boore DM, Rovelli A, Scotti O (2012) Predominant-period site classification for response spectra prediction equations in Italy. Bull Seism Soc Am 102(2):680–695. doi: 10.1785/0120110084 CrossRefGoogle Scholar
  17. Di Giacomo D, Gallipoli MR, Mucciarelli M, Parolai S, Richwalski SM (2005) Analysis and modeling of HVSR in the presence of a velocity inversion: the case of Venosa, Italy. Bull Seism Soc Am 95:2364–2372CrossRefGoogle Scholar
  18. Di Stefano A, Branca S (2002) Long term uplift of the Etnean basement (southern Italy) based on biochronological data from Pleistocene sediments. Terra Nova 14(1):61–68CrossRefGoogle Scholar
  19. Eurocode8 (2003) Design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. EN 1998, European Committee for Standardization, BrusselsGoogle Scholar
  20. Faccioli E, Pessina V (2000) The Catania Project: earthquake damage scenarios for high risk area in the Mediterranean. CNR-Gruppo Nazionale per la Difesa dai Terremoti, RomaGoogle Scholar
  21. Fäh D, Kind F, Giardini D (2001) A theoretical investigation on H/V ratios. Geophys J Int 145:535–549CrossRefGoogle Scholar
  22. Ferranti L, Antonioli F, Amorosi A, Dai Prà G, Mastronuzzi G, Mauz B, Monaco C, Orrù P, Pappalardo M, Radtke U, Renda P, Romano P, Sansò P, Verrubbi V (2006) Elevation of the last interglacial highstand in Sicily (Italy): a benchmark of coastal tectonics. Quat Int 145–146:30–54CrossRefGoogle Scholar
  23. Field EH, Jacob K (1995) A comparison and test of various site response estimation techniques. Bull Seism Soc Am 85(4):1127–1143Google Scholar
  24. Galluzzo D, Del Pezzo E, La Rocca M, Castellano M, Bianco F (2009) Source scaling and site effects at the Vesuvius volcano. Bull Seism Soc Am 99(3):1705–1719CrossRefGoogle Scholar
  25. Géli L, Bard PY, Jullien B (1988) The effect of topography on earthquake ground motion: a review and new results. Bull Seism Soc Am 78:42–63Google Scholar
  26. Giampiccolo E, Gresta S, Mucciarelli M, De Guidi G, Gallipoli MR (2001) Information on subsoil geological structure in the city of Catania (Eastern Sicily) from microtremor measurements. Ann Geofis 44(1):1–11Google Scholar
  27. Gillot PY, Kieffer G, Romano R (1994) The evolution of Mount Etna in the light of potassium-argon dating. Acta Vulcanol 5:81–87Google Scholar
  28. Herak M (2008) ModelHVSR—a Matlab tool to model horizontal-to-vertical spectral ratio of ambient noise. Comput Geosci 34:1514–1526CrossRefGoogle Scholar
  29. Herrmann RB (2002) Computer programs in seismology, vol 4. Luis University, StGoogle Scholar
  30. Ibs-von Seht M, Wohlenberg J (1999) Microtremors measurements used to map thickness of soft soil sediments. Bull Seismol Soc Am 89:250–259Google Scholar
  31. Kieffer G (1971) Dépots et niveaux marins et fluviatiles dé la regione de Catane (Sicile). Méditerranée 5–6:591–626CrossRefGoogle Scholar
  32. Kawase H, Sánchez-Sesma FJ, Matsushima S (2011) The optimal use of horizontal-to-vertical spectral ratios of earthquake motions for velocity inversion based on diffuse-field theory for plane waves. Bull Seismo Soc Am 101(5):2001–2014Google Scholar
  33. Lachet C, Bard P-Y (1994) Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. J Phys Earth 42:377–397CrossRefGoogle Scholar
  34. Lachet C, Hatzfeld D, Bard P-Y, Theodulidis N, Papaioannou C, Savvaidis A (1996) Site effect and microzonation in the city of Thessaloniky (Greece). Comparison of different approaches. Bull Seismol Soc Am 86(6):1692–1703Google Scholar
  35. Lermo J, Chavez-Garcia FJ (1993) Site effect evaluation using spectral ratios with only one station. Bull Seism Soc Am 83(5):1574–1594Google Scholar
  36. Lombardo G, Rigano R (2007) Local seismic response in Catania (Italy): a test area in the northern part of the town. Eng Geol 94:38–49CrossRefGoogle Scholar
  37. Lombardo G, Coco G, Corrao M, Imposa S, Azzara R, Cara F, Rovelli A (2001) Results of microtremor measurements in the urban area of Catania (Italy). Boll Geofis Teor Appl 42(3–4):317–334Google Scholar
  38. Lombardo G, Langer H, Gresta S, Rigano R, Monaco C, De Guidi G (2006) On the importance of geolithological features for the estimate of the site response: the case of Catania metropolitan area (Italia). Nat Hazard 38:339–354CrossRefGoogle Scholar
  39. Lunedei E, Albarello D (2009) On the seismic noise wavefield in a weakly dissipative layered Earth. Geophys J Int 177:1001–1014CrossRefGoogle Scholar
  40. Maresca R, Castellano M, De Matteis R, Saccorotti G, Vaccariello P (2003) Local site effects in the town of Benevento (Italy) from noise measurements. Pure Appl Geophys 160:1745–1764Google Scholar
  41. Monaco C, Catalano S, De Guidi G, Gresta S, Langer H, Tortorici L (2000) The geological map of the urban area of Catania (Eastern Sicily): morphotectonic and seismotectonic implications. Mem Soc Geol It 55:425–438Google Scholar
  42. Monaco C, De Guidi G, Ferlito C (2010) The morphotectonic map of Mt. Etna. Boll Soc Geol Ital 129(3):408–428Google Scholar
  43. Mucciarelli M (1998) Reliability and applicability of Nakamura’s technique using microtremors: an experimental approach. J Earth Eng 2:625–638Google Scholar
  44. Mucciarelli M, Gallipoli MR (2004) The HVSR technique from microtremor to strong motion: empirical and statistical considerations. In: 13th world conference on earthquake engineering, Vancouver, BC, Canada, August 1–6, 2004, paper no 45Google Scholar
  45. Nakamura Y (1989) A method for dynamic characteristics estimation of sub surface using microtremor on the surface. Railw Tech Res Inst Rep 30:25–33Google Scholar
  46. Nogoshi M, Igarashi T (1971) On the amplitude characteristic of microtremor (part 2) (in Japanese with English abstract). J Seism Soc Jpn 24:26–40Google Scholar
  47. Olsen KB, Day SM, Bradle CR (2003) Estimation of Q for Long-Period (>2 sec) waves in the Los Angeles Basin. Bull Seism Soc Am 93(2):627–638CrossRefGoogle Scholar
  48. Panzera F, Lombardo G, Rigano R (2011a) Evidence of topographic effects through the analysis of ambient noise measurements. Seismol Res Lett 82(3):413–419. doi: 10.1785/gssrl.82.3.413 CrossRefGoogle Scholar
  49. Panzera F, Rigano R, Lombardo G, Cara F, Di Giulio G, Rovelli A (2011b) The role of alternating outcrops of sediments and basaltic lavas on seismic urban scenario: the study case of Catania, Italy. Bull Earth Eng 9:411–439. doi: 10.1007/s10518-010-9202-x CrossRefGoogle Scholar
  50. Panzera F, D’Amico S, Lotteri A, Galea P, Lombardo G (2012) Seismic site response of unstable steep slope using noise measurements: the case study of Xemxija bay area, Malta. Nat Hazard Earth Sci Syst 12:3421–3431. doi: 10.5194/nhess-12-3421-2012 CrossRefGoogle Scholar
  51. Panzera F, Lombardo G, Muzzetta I (2013) Evaluation of building dynamic properties through in situ experimental techniques and 1D modelling: the example of Catania, Italy. Phys Chem Earth 63:136–146. doi: 10.1016/j.pce.2013.04.008 CrossRefGoogle Scholar
  52. Panzera F, Pischiutta M, Lombardo G, Monaco C, Rovelli A (2014) Wavefield polarization on fault zones in the western flank of Mt. Etna: observation and fracture orientation modeling. Pure Appl Geophys 171(11):3083–3097. doi: 10.1007/s00024-014-0831-x CrossRefGoogle Scholar
  53. Parolai S, Richwalski SM (2004) The importance of converted waves in comparing H/V and RSM site response estimates. Bull Seism Soc Am 94(1):304–313CrossRefGoogle Scholar
  54. Parolai S, Bormann P, Milkereit C (2001) Assessment of the natural frequency of the sedimentary cover in the Cologne area (Germany) using noise measurements. J Earthq Eng 5:541–564CrossRefGoogle Scholar
  55. Phillips WS, Aki K (1986) Site amplification of coda waves from local earthquakes in Central California. Bull Seism Soc Am 76:627–648Google Scholar
  56. Raptakis D, Theodulidis N, Pitilakis K (1998) Data analysis of the Euroseistest Strong Motion Array in Volvi (Greece): standard and horizontal-to-vertical spectral ratio techniques. Earthq Spectra 14(1):203–224CrossRefGoogle Scholar
  57. Riepl J, Bard PY, Hatzfeld D, Papaioannou C, Nechtschein S (1998) Detailed evaluation of site response estimation methods across and along the sedimentary valley of Volvi (EUROSEISTEST). Bull Seism Soc Am 88(2):488–502Google Scholar
  58. Ristuccia GM, Di Stefano A, Gueli AM, Monaco C, Stella G, Troja SO (2013) OSL chronology of Quaternary terraces between Etna Mt. and the Catania Plain (Sicily, southern Italy): Geodynamic implications. Phys Chem Earth. doi: 10.1016/j.pce.2013.03.002
  59. Rodriguez VH, Midorikawa S (2002) Applicability of the H/V spectral ratio of microtremors in assessing site effects on seismic motion. Earthq Eng Struct Dyn 31(2):261–279CrossRefGoogle Scholar
  60. Romano R (1982) Succession of the volcanic activity in the Etnean area. Mem Soc Geol Ital 23:75–97Google Scholar
  61. Seekins LC, Wennerberg L, Marghereti L, Liu HP (1996) Site amplification at five locations in San Fransico, California: a comparison of S waves, codas, and microtremors. Bull Seism Soc Am 86(3):627–635Google Scholar
  62. SESAME (2004) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation. SESAME European Research Project WP12, deliverable D23.12.
  63. Spudich P, Hellweg M, Lee WHK (1996) Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: implications for mainshock motions. Bull Seism Soc Am 86(1B):S193–S208Google Scholar
  64. Steidl JH, Tumarkin AG, Archuleta RJ (1996) What is a reference site? Bull Seism Soc Am 86:1733–1748Google Scholar
  65. Sturiale C (1960) Le lave del basso versante meridionale dell’Etna. Boll Acc Scienze Gioienia Sc Nat ser IV 5:479–488Google Scholar
  66. Torelli L, Grasso M, Mazzoldi G, Peis D (1998) Plio-Quaternary tectonic evolution and structure of the Catania foredeep, the northern Hyblean Plateau and the Ionian shelf (SE Sicily). Tectonophysics 298:209–221CrossRefGoogle Scholar
  67. Tramelli A, Galluzzo D, Del Pezzo E, Di Vito MA (2010) A detailed study of the site effects in the volcanic area of Campi Flegrei using empirical approaches. Geophys J Int 182(2):1073–1086CrossRefGoogle Scholar
  68. Vidale JE (1986) Complex polarisation analysis of particle motion. Bull Seism Soc Am 76:1393–1405Google Scholar
  69. Zhao JX, Irikura K, Zhang J, Fukushima Y, Somerville PG, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H (2006) An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio. Bull Seismol Soc Am 96:914–925CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • F. Panzera
    • 1
    Email author
  • G. Lombardo
    • 1
  • C. Monaco
    • 1
  • A. Di Stefano
    • 1
  1. 1.Dipartimento di Scienze Biologiche, Geologiche e AmbientaliUniversità di CataniaCataniaItaly

Personalised recommendations