Advertisement

Natural Hazards

, Volume 78, Issue 1, pp 417–442 | Cite as

Flash flood occurrence and magnitude assessment in an alluvial fan context: the October 2011 event in the Southern Apennines

  • Antonio Santo
  • Nicoletta SantangeloEmail author
  • Giuseppe Di Crescenzo
  • Vittoria Scorpio
  • Melania De Falco
  • Giovanni Battista Chirico
Original Paper

Abstract

This study presents the analysis of flash floods triggered by an extreme rainfall event that occurred on 7 October, 2011, over the Marzano carbonate massif (Southern Apennines). The rainfall event reactivated alluvial fans built up at the outlet of two mountain basins. Detailed geological surveys carried out immediately after the event allowed the reconstruction of the main erosion and depositional processes that occurred both in the drainage basin and in the fan areas. The volume of materials eroded in the basin and deposited in the fan was evaluated by means of accurate topographic surveying and GPS measurements. Morphological and morphometric properties of the basin/fan system as well as the presence of human interventions and structures along the main channel and in the fan area influenced flow propagation. The transported materials came mainly from debris and gravels previously accumulated along the stream beds and mobilised by the flow during the event. No significant evidence of landslide contribution to transported bed load was detected. Extensive damage was done to buildings, river bank structures and agricultural crops. Despite the existence of hundreds of similar alluvial/fan systems in the Southern Apennines, few studies have been conducted to support adequate risk mitigation action in these areas. Indeed, to our knowledge, this is the first study focusing on assessing the magnitude of alluvial fan flooding in the context of the Southern Apennines. Studies like the present one may help determine the volumes involved during flash floods whilst providing support for detailed flood hazard zoning and for risk mitigation planning.

Keywords

Flash flood Debris flow Alluvial fan Event magnitude Southern Apennines 

Notes

Acknowledgments

We are grateful to Dr. Mauro Biafore and Matteo Gentilella (Centro Funzionale Regione Campania) for providing us with the rainfall data. We also thank the two anonymous reviewers.

References

  1. Amato A, Cinque A, Santangelo N, Santo A (1992) Il bordo meridionale del massiccio del Monte Marzano e la valle del Fiume Bianco: Geologia e geomorfologia. Studi Geologici Camerti Special 1:191–200Google Scholar
  2. Ascione A, Cinque A, Improta L, Villani F (2003) Late Quaternary faulting within the Southern Apennines seismic belt: new data from Mt. Marzano area (Southern Italy). Quat Int 101–102:27–41CrossRefGoogle Scholar
  3. Ascione A, Mazzoli S, Petrosino P, Valente E (2013) A decoupled kinematic model for active normal faults: insights from the 1980, MS = 6.9 Irpinia earthquake, southern Italy. Geol Soc Am Bull 125:1239–1259. doi: 10.1130/B30814.1 CrossRefGoogle Scholar
  4. Aulitzky H (1980) Preliminary two-fold classification of torrents. Proceedings international symposium interpraevent. Bad Ischl 4:285–309Google Scholar
  5. Berti M, Simoni A (2007) Prediction of debris-flow inundation areas using empirical mobility relationships. Geomorphology 90:144–161CrossRefGoogle Scholar
  6. Bonardi G, Amore FO, Ciampo G, De Capoa P, Miconnet P, Perrone V (1988) Il “Complesso Liguride” Auct.: stato delle conoscenze e problemi aperti sulla sua evoluzione appenninica ed i suoi rapporti con l’Arco calabro. Memorie Società Geologica Italiana 41:17–35Google Scholar
  7. Bull WB (1968) Alluvial fans. J Geol 16:101–106Google Scholar
  8. Cascini L, Ferlisi S, Vitolo E (2008) Individual and societal risk owing to landslides in the campania region (Southern Italy). Georisk 2(3):125–140Google Scholar
  9. Cavalli M, Marchi L (2008) Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR. Nat Hazards Earth Syst Sci 8:323–333CrossRefGoogle Scholar
  10. Copertino VA, Fiorentino M. (1994) Valutazione delle piene in Puglia, 286 p, La Modernissima, Lamezia Terme, ItalyGoogle Scholar
  11. Costa JE (1988) Rheologic, Geomorphic and Sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. In: Baker RR, Kochel RC, Patton C (eds) Flood geomorphology. Wiley, New York, pp 113–122Google Scholar
  12. Crosta GB, Frattini P (2004) Controls on modern Alluvial fan processes in the Central Alps, Nothern Italy. Earth Surf Proc Land 29:267–293CrossRefGoogle Scholar
  13. Crosta G, Cucchiaro S, Frattini P (2003) Validation of semi-empirical relationships for the defi nition of debris flow behavior in granular materials. In: Rickenmann D, Chen C (eds) Debris flow hazards mitigation: mechanics, prediction, and assessment. Millpress, Rotterdam, pp 821–832Google Scholar
  14. D’ Agostino V, Cesca M, Marchi L (2010) Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps). Geomorphology 115:294–304CrossRefGoogle Scholar
  15. De Scally FA, Owens IF (2004) Morphometric controls and Geomorphic responses on fans in the Southern Alps, New Zealand. Earth Surf Proc Land 29:311–322CrossRefGoogle Scholar
  16. De Scally F, Slaymaker O, Owens I (2001) Morphometric controls and basin response in the Cascade Mountains. Geogr Ann 83A(3):117–130CrossRefGoogle Scholar
  17. De Scally FA, Owens IF, Louis J (2010) Controls on fan depositional processes in the schist ranges of the Southern Alps, New Zealand, and implications for debris-flow hazard assessment. Geomorphology 122:99–116CrossRefGoogle Scholar
  18. FEMA (2000) Guidelines for determining flood hazards on alluvial fans. Federal Emergency Management Agency. http://www.fema.gov/mit/tsd/ft_alfan.htm
  19. Griswold JP, Iverson RM (2008) Mobility Statistics and Automated Hazard Mapping for Debris-fl ows and Rock Avalanches. US Geological Survey Scientific Investigations Report 5276. US Geological Survey, Reston, VA: 59Google Scholar
  20. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5:3–17CrossRefGoogle Scholar
  21. Hooke RLB (1967) Processes on arid region alluvial fans. J Geol 75:438–460CrossRefGoogle Scholar
  22. Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J Roy Stat Soc B 52:105–124Google Scholar
  23. Hungr O, Morgan GC, Kellerhals R (1984) Quantitative analysis of debris torrent hazard for design of remedial measures. Can Geotech J 21(4):663–677CrossRefGoogle Scholar
  24. Iverson RM, Schilling SP, Wallace JW (1998) Objective delineation of lahar inundation hazard zones. Geol Soc Am Bull 110(8):972–984CrossRefGoogle Scholar
  25. Jakob M (2005) Debris-flow hazard analysis. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Praxis Springer, Berlin Heidelberg, pp 411–438CrossRefGoogle Scholar
  26. Jenks GF (1967) The data model concept in statistical mapping. Int Yearbook Cartography 7:186–190Google Scholar
  27. Kellerhals R, Church M (1990) Hazard management on fans, with examples from British Columbia. In: Rachocki AH, Chuch M (eds) Alluvial Fans, a Field Approach. Wiley, New York, pp 335–354Google Scholar
  28. Kostaschuk RA, MacDonald GM, Putman PE (1986) Depositional processes and alluvial fan drainage basin morphometric relationship near Banff, Alberta, Canada. Earth Surf Proc Land 11:471–484CrossRefGoogle Scholar
  29. Marchi L, D’Agostino V (2004) Estimation of the debris-flow magnitude in the Eastern Italian Alps. Earth Surf Proc Land 29:207–220CrossRefGoogle Scholar
  30. Marchi L, Borga M, Preciso E, Gaume E (2010) Characterisation of selected estreme flash floods in Europe and implications for flood risk management. J Hydrol 394(1–2):118–133. doi: 10.1016/j.jhydrol.2010.07.017 CrossRefGoogle Scholar
  31. Mavrouli O, Fotopoulou S, Pitilakis K, Zuccaro G, Corominas J, Santo A, Cacace F, De Gregorio D, Di Crescenzo G, Foerster E, Ulrich T (2014) Vulnerability assessment for reinforced concrete buildings exposed to landslides. DOI, Bull Eng Geol Environ. doi: 10.1007/s10064-014-0573-0 Google Scholar
  32. O’Brien JS, Julien PY (1985) Physical properties and mechanics of hyperconcentrated sediment flows. Proceedings of ASCE specialty conference on the delineation of landsfides, flash floods and debris flow hazards in Utah, Utah Water Research Lab., Univ. of Utah at Logan, Utah, pp 260–279Google Scholar
  33. Paronuzzi P, Coccolo A, Garlatti G (1998) Eventi meteorici critici e debris flows nei bacini montani del Friuli. L’Acqua, Sezione I/Memorie 6:39–50Google Scholar
  34. Patacca E, Sartori R, Scandone P (1990) Tyrrenian basin and apenninic arcs: kinematic relations since late Tortonian times. Memorie della Società Geologica Italiana 45:425–451Google Scholar
  35. Pescatore T, Renda P, Schiattarella M, Tramutoli M (1999) Stratigraphic and structural relationships between Meso-Cenozoic Lagonegro basin and coeval carbonate platforms in southern Apennines, Italy. Tectonophysics 315:269–286CrossRefGoogle Scholar
  36. Piccolo F, Chirico GB (2005) Sampling errors in rainfall measurements by weather radar. Adv Geosci 2:151–155. doi: 10.5194/adgeo-2-151-2005 CrossRefGoogle Scholar
  37. Preti F, Forzieri G, Chirico GB (2011) Forest cover influence on regional flood frequency assessment in Mediterranean catchments. Hydrol Earth Syst Sci 15:3077–3090CrossRefGoogle Scholar
  38. Rickenmann D (2005) Runout prediction methods. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Praxis Springer, Berlin, pp 305–324CrossRefGoogle Scholar
  39. Romero R, Emanuel K (2013) Medicane risk in a changing climate. J Geophys Res Atmos 118(12):5992–6001CrossRefGoogle Scholar
  40. Rossi F, Villani P (1994) Regional flood estimation methods. Giuseppe Rossi, Nilgun Harmancioglu and Vujica Yevjevich Coping with Floods Pag. Kluwer in cooperation with NATO Scientific Affairs Division, Dordrecht, pp 135–169Google Scholar
  41. Rossi F, Fiorentino M, Versace P (1984) Two-component extreme value distribution for flood frequency analysis. Water Resour Res 20(7):847–856. doi: 10.1029/WR020i007p00847 CrossRefGoogle Scholar
  42. Santangelo N, Santo A, Di Crescenzo G, Foscari G, Liuzza V, Sciarrotta S, Scorpio V (2011) Flood susceptibility assessment in a highly urbanized alluvial fan: the case of Sala Consilina (southern Italy). Nat Hazards Earth Syst Sci 11:2765–2782. doi: 10.5194/nhess-11-1-2011 CrossRefGoogle Scholar
  43. Santangelo N, Daunis-i-Estadella J, Di Crescenzo G, Di Donato V, Faillace P, Martin-Fernandez JA, Romano P, Santo A, Scorpio V (2012) Topographic predictors of susceptibility to alluvial fan flooding, Southern Apennines. Earth Surf Proc Land 37:803–817. doi: 10.1002/esp.3197 CrossRefGoogle Scholar
  44. Santo A, Santangelo N, Benedice A, Iovane F (2002) Pericolosità connessa a processi alluvionali in aree pedemontane: il caso di Castellamare di Stabia in Penisola Sorrentina. Il Quaternario 15(1):23–37Google Scholar
  45. Scheidl C, Rickenmann D (2010) Empirical prediction of debris flow mobility and deposition on fans. Earth Surf Process Landforms 35:157–173Google Scholar
  46. Scorpio V (2011) Analisi Geomorfologica dei sistemi bacino-conoide dell’Appennino campano: scenari di suscettibilità alluvionale. Tesi di Dottorato di Ricerca in Scienze della Terra. XXIV CicloUniversità degli Studi di Napoli Federico II, pp. 182, Tavv. 5Google Scholar
  47. Sibson R (1981) A brief description of natural neighbor interpolation, Chapter 2 in Interpolating Multivariate Data, 21–36. Wiley, New YorkGoogle Scholar
  48. Sorriso-Valvo M, Antronico L, La Pera E (1998) Controls on fan morphology in Calabria, southern Italy. Geomorphology 24:169–187CrossRefGoogle Scholar
  49. Waythomas C, Miller T, Begér JE (2000) Record of late holocene debris avalanches and lahars at Iliamna volcano, Alaska. J Volcanol Geoth Res 106:97–130CrossRefGoogle Scholar
  50. Welsh A, Davies T (2011) Identification of alluvial fans susceptible to debris flow hazards. Landslides 8:183–194CrossRefGoogle Scholar
  51. Yu F, Chen C, Chen T, Hung F, Lin S (2006) A GIS process for delimitating areas potentially endangered by debris-flow. Nat Hazards 37:169–189CrossRefGoogle Scholar
  52. Zanchetta G, Sulpizio R, Di Vito MA (2004) The role of volcanic activity and climate in alluvial fan growth at volcanic areas: an example from Southern Campania (Italy). Sed Geol 168:249–280CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Antonio Santo
    • 1
  • Nicoletta Santangelo
    • 2
    Email author
  • Giuseppe Di Crescenzo
    • 1
  • Vittoria Scorpio
    • 3
  • Melania De Falco
    • 2
  • Giovanni Battista Chirico
    • 4
  1. 1.Dipartimento di Ingegneria Civile, Edile ed Ambientale (DICEA)Università di Napoli Federico IINaplesItaly
  2. 2.Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR)Università di Napoli Federico IINaplesItaly
  3. 3.Dipartimento di Bioscienze e TerritorioUniversità del MolisePescheItaly
  4. 4.Dipartimento di AgrariaUniversità di Napoli Federico IIPortici, NapoliItaly

Personalised recommendations