Advertisement

Natural Hazards

, Volume 79, Supplement 1, pp 291–314 | Cite as

Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: advantages and limitations

  • Álvaro Gómez-Gutiérrez
  • Christian Conoscenti
  • Silvia Eleonora Angileri
  • Edoardo Rotigliano
  • Susanne Schnabel
Original Paper

Abstract

Empirical multivariate predictive models represent an important tool to estimate gully erosion susceptibility. Topography, lithology, climate, land use and vegetation cover are commonly used as input for these approaches. In this paper, two multivariate predictive models were generated for two gully erosion processes in San Giorgio basin (Italy) and Mula River basin (Spain) using only topographical attributes as independent variables. Initially, nine models (five for San Giorgio and four for Mula) with pixel sizes ranging from 2 to 50 m were generated, and validation statistics were calculated to estimate the optimal pixel size. The best models were selected based on model performance using the area under the receiver operating characteristic (AUC) curve and the generalized cross-validation. The best pixel size was 4 m in the San Giorgio basin and 20 m in the Mula basin. The finest resolution was not necessarily the best; rather, the relationship between digital elevation model resolution and size of the landform was important. The two selected models showed an excellent performance with AUC values of 0.859 and 0.826 for San Giorgio and Mula, respectively. The Topographic Wetness Index and the general curvature were identified as key topographical attributes in San Giorgio and Mula basins, respectively. Both attributes were related to the processes observed in the field and described in the literature. Finally, maps of gully erosion susceptibility were produced for each basin. These maps showed that 22 and 20 % of San Giorgio and Mula basins, respectively, present favourable conditions for the development of gullies.

Keywords

Gully erosion susceptibility Topography Topographical attributes Empirical multivariate models Digital elevation models (DEMs) 

Notes

Acknowledgments

Á. Gómez-Gutiérrez, C. Conoscenti, S. E. Angileri, E. Rotigliano and S. Schnabel have commonly shared all the parts of the research. Clare Hampton has linguistically edited the final version of this text. Finally, thanks to the Spanish Ministry of Science for economically supporting this work by AMID research project (CGL2011-23361).

References

  1. Akgün A, Türk N (2011) Mapping erosion susceptibility by a multivariate statistical method: a case study from the Ayvalık region, NW Turkey. Comput Geosci 37:1515–1524. doi: 10.1016/j.cageo.2010.09.006 CrossRefGoogle Scholar
  2. Alonso Sarria F, Romero Díaz A, Ruíz Sinoga JD, Belmonte Serrato F (2011) Gullies and badland landscapes in Neogene basins, region of Murcia, Spain. Landf Anal 17:161–165Google Scholar
  3. Beguería S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazard 37:315–329. doi: 10.1007/s11069-005-5182-6 CrossRefGoogle Scholar
  4. Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69CrossRefGoogle Scholar
  5. Bonacina LCW (1945) Orographic rainfall and its place in the hydrology of the globe. Q J R Meteorol Soc 71:41–55. doi: 10.1002/qj.49707130705 CrossRefGoogle Scholar
  6. Chang KT, Tsai BW (1991) The effect of DEM resolution on slope and aspect mapping. Cartogr Geogr Inf Syst 18:69–77CrossRefGoogle Scholar
  7. Chaplot V (2013) Impact of terrain attributes, parent material and soil types on gully erosion. Geomorphology 186:1–11. doi: 10.1016/j.geomorph.2012.10.031 CrossRefGoogle Scholar
  8. Conforti M, Aucelli PC, Robustelli G, Scarciglia F (2011) Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat Hazard 56:881–898. doi: 10.1007/s11069-010-9598-2 CrossRefGoogle Scholar
  9. Conoscenti C, Agnesi V, Angileri S, Cappadonia C, Rotigliano E, Märker M (2013) A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily, Italy. Environ Earth Sci 70:1179–1195. doi: 10.1007/s12665-012-2205-y CrossRefGoogle Scholar
  10. Conoscenti C, Angileri S, Cappadonia C, Rotigliano E, Agnesi V, Märker M (2014) Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology 204:399–411. doi: 10.1016/j.geomorph.2013.08.021 CrossRefGoogle Scholar
  11. Craven P, Wahba G (1979) Smoothing noisy data with spline functions. Numer Math 31:377–403CrossRefGoogle Scholar
  12. De Veaux RD, Psichogios DC, Ungar LH (1993) A comparison of two nonparametric estimation schemes: MARS and neural networks. Comput Chem Eng 17:819–837CrossRefGoogle Scholar
  13. Deleo JM (1993) Receiver operating characteristic laboratory (ROCLAB): software for developing decision strategies that account for uncertainty. In: Proceedings of the second international symposium on uncertainty modelling and analysis, College Park, Computer Society Press, pp 318–325Google Scholar
  14. Desmet PJJ, Poesen J, Govers G, Vandaele K (1999) Importance of slope gradient and contributing area for optimal prediction of the initiation and trajectory of ephemeral gullies. Catena 37:377–392CrossRefGoogle Scholar
  15. Dragut L, Shauppenlehner T, Muhar A, Strobl J, Blaschke T (2009) Optimization of scale and parametrization for terrain segmentation: an application to soil-landscape modeling. Comput Geosci 35:1875–1883CrossRefGoogle Scholar
  16. Esteves M, Lapetite JM (2003) A multi-scale approach of runoff generation in a Sahelian gully catchment: a case study in Niger. Catena 50:255–271CrossRefGoogle Scholar
  17. Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–141CrossRefGoogle Scholar
  18. Geissen V, Kampichler C, López-de Llergo-Juarez JJ, Galindo-Acántara A (2007) Superficial and subterranean soil erosion in Tabasco, tropical Mexico: development of a decision tree modeling approach. Geoderma 139:277–287CrossRefGoogle Scholar
  19. Gómez Gutiérrez A, Schnabel S, Lavado Contador JF (2011) Procesos, factores y consecuencias de la erosión por cárcavas; trabajos desarrollados en la Península Ibérica. Boletín de la Asociación de Geógrafos Españoles 55:59–80Google Scholar
  20. Gómez-Gutiérrez Á, Schnabel S, Contador FL (2009a) Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain. Land Degrad Dev 20:535–550CrossRefGoogle Scholar
  21. Gómez-Gutiérrez Á, Schnabel S, Felicísimo ÁM (2009b) Modelling the occurrence of gullies in rangelands of southwest Spain. Earth Surf Proc Land 34:1894–1902CrossRefGoogle Scholar
  22. Gómez-Gutiérrez Á, Schnabel S, Lavado Contador JF (2009c) Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecol Model 220:3630–3637CrossRefGoogle Scholar
  23. Gómez-Gutiérrez Á, Schnabel S, De Sanjosé JJ, Contador FL (2012) Exploring the relationships between gully erosion and hydrology in rangelands of SW Spain. Zeitschrift fur Geomorphologie 56:27–44CrossRefGoogle Scholar
  24. Gómez-Gutiérrez Á, Schnabel S, Berenguer-Sempere F, Lavado-Contador F, Rubio-Delgado J (2014) Using 3D photo-reconstruction methods to estimate gully headcut erosion. Catena 120:91–101. doi: 10.1016/j.catena.2014.04.004 CrossRefGoogle Scholar
  25. Hancock GR, Evans KG (2005) Channel head location and characteristics using digital elevation models. Earth Surf Proc Land 31:809–824CrossRefGoogle Scholar
  26. Hengl T (2006) Finding the right pixel size. Comput Geosci 32:1283–1298. doi: 10.1016/j.cageo.2005.11.008 CrossRefGoogle Scholar
  27. Horn BKP (1981) Hill shading and the reflectance map. Proc IEEE 69:14–47Google Scholar
  28. Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New YorkCrossRefGoogle Scholar
  29. Hughes AO, Prosser IP (2012) Gully erosion prediction across a large region: Murray-Darling Basin, Australia. Soil Res 50:267–277. doi: 10.1071/SR12025 CrossRefGoogle Scholar
  30. Hughes AO, Prosser IP, Stevenson J, Scott A, Lu H, Gallant J, Moran CJ (2001) Gully erosion mapping for the National land water resources audit. CSIRO Land and Water Technical reportGoogle Scholar
  31. IUSS Working Group WRB (2007) World Reference Base for Soil Resources 2006, first update 2007, World Soil Resources Reports No 103 edn. FAO, RomeGoogle Scholar
  32. Kheir RB, Wilson J, Deng Y (2007) Use of terrain variables for mapping gully erosion susceptibility in Lebanon. Earth Surf Process Landf 32:1770–1782CrossRefGoogle Scholar
  33. Lucà F, Conforti M, Robustelli G (2011) Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology 134:297–308. doi: 10.1016/j.geomorph.2011.07.006 CrossRefGoogle Scholar
  34. Magliulo P (2010) Soil erosion susceptibility maps of the Janare Torrent Basin (Southern Italy). J Maps 6:435–447. doi: 10.4113/jom.2010.1116 CrossRefGoogle Scholar
  35. Magliulo P (2012) Assessing the susceptibility to water-induced soil erosion using a geomorphological, bivariate statistics-based approach. Environ Earth Sci 67:1801–1820. doi: 10.1007/s12665-012-1634-y CrossRefGoogle Scholar
  36. Märker M, Pelacani S, Schröder B (2011) A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy. Geomorphology 125:530–540. doi: 10.1016/j.geomorph.2010.10.022 CrossRefGoogle Scholar
  37. Merkel WH, Woodward DE, Clarke CD (1988) Ephemeral gully erosion model (EGEM). Model Agric For Rangel Hydrol Am Soc Agric Eng Publ 7:315–323Google Scholar
  38. Meyer JA, Martínez-Casasnovas JA (1999) Prediction of existing gully erosion in vineyard parcels of the NE Spain: a logistic modelling approach. Soil Tillage Res 50:319–331CrossRefGoogle Scholar
  39. Moeyersons J (2000) Desertification and man in Africa bulletin of the royal academy of overseas. Science 46:151–170Google Scholar
  40. Montgomery DR, Dietrich WE (1992) Channels initiation and the problem of landscape scale. Science 255:826–830CrossRefGoogle Scholar
  41. Montgomery DR, Dietrich WE (1994) Landscape dissection and drainage area-slope thresholds. In: Kirkby MJ (ed) Process models and theoretical geomorphology. Wiley, Chichester, pp 221–245Google Scholar
  42. Morgan RPC, Mngomezulu D (2003) Threshold conditions for initiation of valley-side gullies in the Middle veld of Swaziland. Catena 50:401–414CrossRefGoogle Scholar
  43. Moore ID, Burch GJ (1986) Modelling erosion and deposition. Topographic effects. Transactions of the ASAE 29:1624–1630Google Scholar
  44. Moore ID, Turner AK, Wilson JP, Jenson SK, Band LE (1993) GIS and land-surface-subsurface process modelling. In: Goodchild MF, Parks BO, Steyaert LT (eds) Environmental modelling with GIS, pp 213–230Google Scholar
  45. Muñoz J, Felicísimo ÁM (2004) Comparison of statistical methods commonly used in predictive modelling. J Veg Sci 15:285–292. doi: 10.1111/j.1654-1103.2004.tb02263.x CrossRefGoogle Scholar
  46. NATMUR-08 (2008) Vuelo fotogramétrico digital y levantamiento LIDAR de la Región de MurciaGoogle Scholar
  47. Parkner T, Page MJ, Marutami T, Trustrum NA (2006) Development and controlling factors of gullies and gully complexes, East coast, New Zealand. Earth Surf Process Landf 31:187–199CrossRefGoogle Scholar
  48. Patton PC, Schumm SA (1975) Gully erosion, northwestern Colorado: a threshold phenomenon. Geology 3:88–90CrossRefGoogle Scholar
  49. Piest RF, Bradford JM, Wyatt GM (1975) Soil erosion and sediment transport from gullies. J Hydraul Div Am Soc Civ Eng 101:65–80Google Scholar
  50. Poesen J (2011) Challenges in gully erosion research. Landf Anal 17:5–9Google Scholar
  51. Poesen J, Nachtergaele J, Verstraeten G, Valentin C (2003) Gully erosion and environmental change: importance and research needs. Catena 50:91–133CrossRefGoogle Scholar
  52. Raaflaub LD, Collins MJ (2006) The effect of error in gridded digital elevation models on the estimation of topographic parameters. Environ Model Softw 21:710–732. doi: 10.1016/j.envsoft.2005.02.003 CrossRefGoogle Scholar
  53. Romero Díaz A, Marín Sanleandro P, Sánchez Soriano A, Belmonte Serrato F, Faulkner H (2007) The causes of piping in a set of abandoned agricultural terraces in southeast Spain. Catena 69:282–293CrossRefGoogle Scholar
  54. Romero Díaz A, Plaza Martínez JP, Sánchez Soriano A, Belmonte Serrato F, Ruíz-Sinoga JD (2009) Estimación de volúmenes de suelo perdido por procesos de erosión por piping. Sureste de España. In: Romero Díaz A, Belmonte Serrato F, Alonso Sarria F, López Bermúdez F (eds) Advances in studies on desertification. Editum, Murcia, pp 407–411Google Scholar
  55. Romero Díaz A, Alonso Sarria F, Sánchez Soriano A (2011) Influencia de los factores topográficos en los procesos de piping, Murcia (España). Cuadernos de Investigación Geográfica 37:41–66CrossRefGoogle Scholar
  56. Schnabel S, Gómez Amelia D, Ceballos A (1998) Eventos extremos y erosión en cárcava. In: Gómez Ortíz A, Salvador Franch F (eds) Investigaciones recientes de la geomorfología española. Barcelona, pp 143–152Google Scholar
  57. Sidorchuk A (1999) Dynamic and static models of gully erosion. Catena 37:401–414CrossRefGoogle Scholar
  58. Sidorchuk A (2005) Stochastic components in the gully erosion modelling. Catena 63:299–317CrossRefGoogle Scholar
  59. Svoray T, Michailov E, Cohen A, Rokah L, Sturm A (2012) Predicting gully initiation: comparing data mining techniques, analytical hierarchy processes and the topographic threshold. Earth Surf Proc Land 37:607–619. doi: 10.1002/esp.2273 CrossRefGoogle Scholar
  60. Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in a grid digital elevation models. Water Resour Res 33:309–320Google Scholar
  61. Thompson JA, Bell JC, Butler CA (2001) Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling. Geoderma 100:67–89CrossRefGoogle Scholar
  62. Vandaele K, Poesen J, Govers G, Wesemael B (1996) Geomorphic threshold conditions for ephemeral gully incision. Geomorphology 16:161–173CrossRefGoogle Scholar
  63. Vergari F, Della Seta M, Del Monte M, Fredi P, Lupia Palmieri E (2013) Long- and short-term evolution of several Mediterranean denudation hot spots: the role of rainfall variations and human impact. Geomorphology 183:14–27. doi: 10.1016/j.geomorph.2012.08.002 CrossRefGoogle Scholar
  64. Volo ATA V (2007–2008) Modello digitale del terrreno Regione SicilianaGoogle Scholar
  65. Wade A (1935) The relationship between topography and geology. Aust Surv 5:367–371. doi: 10.1080/00050326.1935.10436440 CrossRefGoogle Scholar
  66. Wolman MG (1959) Factors influencing erosion of a cohesive river bank. Am J Sci 257:204–216CrossRefGoogle Scholar
  67. Wu Y, Cheng H (2005) Monitoring of gully erosion on the Loess Plateau of China using a global positioning system. Catena 63:154–166CrossRefGoogle Scholar
  68. Wu S, Li J, Huang GH (2007) Modeling the effects of elevation data resolution on the performance of topography-based watershed runoff simulation. Environ Model Softw 22:1250–1260. doi: 10.1016/j.envsoft.2006.08.001 CrossRefGoogle Scholar
  69. Zakharov SA (1940) Importance of slope aspect and gradient for soil and vegetation distribution in the Great Caucasus. Journal Botanique de l’URSS 4–5:387–405Google Scholar
  70. Zevenbergen LW, Thorne CR (1987) Quantitative analysis of land surface topography. Earth Surf Proc and Land 12:47–56Google Scholar
  71. Zhang W, Montgomery DR (1994) Digital elevation model grid size, landscape representation and hydrologic simulations. Water Resour Res 30:1019–1028CrossRefGoogle Scholar
  72. Zhou Q, Liu X (2004) Analysis of errors of derived slope and aspect related to DEM data properties. Comput Geosci 30:369–378CrossRefGoogle Scholar
  73. Zucca C, Canu A, Della Peruta R (2006) Effects of land use and landscape on spatial distribution and morphological features of gullies in an agropastoral area in Sardinia (Italy). Catena 68:87–95. doi: 10.1016/j.catena.2006.03.015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Álvaro Gómez-Gutiérrez
    • 1
  • Christian Conoscenti
    • 2
  • Silvia Eleonora Angileri
    • 2
  • Edoardo Rotigliano
    • 2
  • Susanne Schnabel
    • 1
  1. 1.Geoenvironmental Research GroupUniversity of ExtremaduraCáceresSpain
  2. 2.Department of Earth and Sea SciencesUniversity of PalermoPalermoItaly

Personalised recommendations