Natural Hazards

, Volume 77, Issue 3, pp 2117–2138 | Cite as

The spatial variability of ice-jam bank morphologies along the Mistassini River (Quebec, Canada): an indicator of the ice-jam regime?

  • Stephanie Morin
  • Etienne Boucher
  • Thomas Buffin-Belanger
Original Paper


This study aims to investigate ice-jam regimes on the Mistassini River by analyzing the impacts of ice-jams on riverbank morphologies and ecosystems. The Mistassini River experienced severe ice-jams in May 2011, which caused the destruction of 20 riverside houses. Geomorphological and ecological descriptions of riverbanks helped identify and spatialize ice impacts along four sections of the river with contrasted morphologies: meanders, linear with islands, linear, and sinuous. Channel characteristics were investigated to document the typical spatial context in which ice-impact features dominate on the Mistassini River. In each section, ice-jam frequencies and magnitude were determined through the dendrochronological analysis of ice scars found on riparian trees. Our results show that ice-impacted banks are characterized by a two-level structure separated by a steep (average slope = 25 %) and irregular talus overlaid by freshly deposited alluvia. Those banks are colonized by abundant shrubs and few trees, both presenting numerous ice scars. This bank type forms during severe eroding events where the ice flood reaches levels that are much higher than bankfull. Most ice-impacted banks tend to occur in two preferential hydro-geomorphological contexts: (1) a downstream increase in the flow area and width–depth ratio within a mild slope channel; (2) a sudden narrowing in an entrenched channel. We finally show that the proportion of two-level banks increases in the downstream direction as ice-jam frequencies decrease and magnitudes increase. These results suggest that ice-impact features are more likely to be formed in the downstream sections, due to ice-jam higher level of magnitude.


Ice-jam dynamic Ice-jam geomorphological features Recurrence rate Magnitude Risk management Dendrochronology 



The authors would like to thank the MRC Maria-Chapdelaine (Jacques Potvin, François Potvin and Nathalie Laprise), UQAM Geography Department (André Parent and François Moquin) and the Faculté des sciences humaines de l’UQAM for their financial support to S. Morin (Master scholarship) and technical help. The authors would also like to thank the following individuals for their incredible help with the field work on the Mistassini River: Pénélope Leclerc, Simon William, Annie Lagadec, Marc-André Hurtubise, Mathieu Gratton, Sarah Boivin and Gilles Granal (Aventuraid).


  1. Ashton GD (1986) River and lake ice engineering. Water Resources Publications, LLC, ColoradoGoogle Scholar
  2. Beltaos S (1995) River ice jams. Water Resources Publications, LLC, ColoradoGoogle Scholar
  3. Beltaos S (2008) River ice breakup. Water Resources Publications, LLC, ColoradoGoogle Scholar
  4. Beltaos S, Burrell B (2002) Extreme ice jam floods along the Saint-John River, New-Brunswick, Canada. Proceedings of an International Symposium on extreme floods, IAHS, in Reykjavik, July 2000. Accessed 24 Oct 2014
  5. Beltaos S, Burrell B (2003) Climatic change and river ice breakup. Can J Civ Eng 30:145–155. doi: 10.1139/L02-042 CrossRefGoogle Scholar
  6. Best H, McNamara JP, Liberty L (2005) Association of ice and river determined channel morphology using ground-penetrating radar in the Kuparuk River, Alaska. Arct Antarct Alp Res 37(2):157–162. doi:10.1657/1523-0430(2005)037[0157:AOIARC]2.0.CO;2CrossRefGoogle Scholar
  7. Boucher E, Bégin Y, Arseneault D (2009) Impacts of recurring ice jams on channel geometry and geomorphology in a small high-boreal watershed. Geomorphology 108:272–281. doi: 10.1016/j.geomorph.2009.02.014 CrossRefGoogle Scholar
  8. Daigneault RA, Cousineau PA, Leduc E et al. (2011) Rapport final sur les travaux de cartographie de formations superficielles réalisés dans le territoire municipalisé du Saguenay-Lac-Saint-Jean (Québec) entre 2009 et 2011. Governemental Report for the Ministère des Ressources Naturelles et de la Faune (Québec)Google Scholar
  9. Dauphiné A (2003) Risques et catastrophes. Observer, spatialiser, comprendre, gérer. Armand Colin, ParisGoogle Scholar
  10. Demers S, Buffin-Bélanger T (2011) Une méthode illustrée pour la sectorisation morphodynamique de la rivière Neigette (Québec). Can Geogr 55(3):318–333. doi: 10.1111/j.1541-0064.2011.00362.x CrossRefGoogle Scholar
  11. Demers S, Olsen T, Buffin-Bélanger T, Marchand JP, Biron P, Morneau F (2014) L’hydrogéomorphologie appliquée à la gestion de l’aléa d’inondation en climat tempéré froid: l’exemple de la rivière Matane (Québec). Physio Géo 8:67–88. doi: 10.4000/physio-geo.3813 CrossRefGoogle Scholar
  12. Ettema R (2002) Review of alluvial-channel responses to river ice. J Cold Reg Eng 16(4):191–218. doi: 10.1061/(ASCE)0887-381X(2002)16:4(191) CrossRefGoogle Scholar
  13. Hamelin LE (1979) The bechevnik: a river bank feature from Siberia. Musk Ox 25:70–72Google Scholar
  14. Henoch WES (1973) Height, frequency of floods, ice jamming and tree-ring studies. Hydrologie aspects of northern pipeline development, Environmental-Social Committee Northern Pipelines, Task Force on Northern Oil Development, pp 153–177Google Scholar
  15. Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New YorkCrossRefGoogle Scholar
  16. Kellerhals R, Church M (1980) Comment on “Effects of channel enlargement by river ice processes on bankfull discharge in Alberta, Canada” by D.G. Smith. Water Resour Res 16(6):1131–1134. doi: 10.1029/WR016i006p01131 CrossRefGoogle Scholar
  17. MacKay JR, MacKay DK (1977) The stability of ice-push features, Mackenzie River, Canada. Can J Earth Sci 14(10):2213–2225CrossRefGoogle Scholar
  18. McNamara JP, Kane DL (2009) The impact of a shrinking cryosphere on the form of arctic alluvial channels. Hydrol Process 23:159–186CrossRefGoogle Scholar
  19. McPherson HJ (1966) Morphology and fluvial processes of the lower Red Deer River Valley, Alberta (Doctorat thesis), McGill University. http://digitool.Library.McGill.CA:80/R/-?func=dbin-jumpfull&object_id=73666&silo_library=GEN01. Accessed 23 Oct 2014
  20. Michel B (1972) Properties and processes of river and lake ice. Proceedings of the International Symposia on the Role of Ice and Snow in Hydrology, Unesco-WMO-IAHS. Banff, Canada, September 1972 (p. 451–482) Accessed 23 Oct 2014
  21. Murtagh F (1985) Multidimensional clustering algorithms. In: Chambers JM, Gordesch J, Klas A, Lebart L, Sint PP (eds) COMPSTAT Lectures 4. Physica-Verlag, WuerzburgGoogle Scholar
  22. Organisme de bassin-versant du Lac-Saint-Jean (OBV) (2012) Plan directeur de l’eau bassin versant du Lac Saint-Jean-Partie 2: L’analyse de bassin, Accessed 24 Oct 2014
  23. Pariset E, Hausser R, Gagnon A (1966) Formation of ice covers and ice jams in rivers. ASCE J Hydraul Eng 92(HY6):1–24Google Scholar
  24. Prowse TD, Beltaos S (2002) Climatic control of river-ice hydrology: a review. Hydrol Process 16:805–822. doi: 10.1002/hyp.369 CrossRefGoogle Scholar
  25. Prowse TD, Bonsal BR, Duguay CR, Hessen DO, Vuglinski VS (2008) River and lake ice. In: United Nation Environment Program (UNEP) (ed) Global Outlook for Ice and Snow, Norway: UNEP/GRID-Arendal, p 201–214 Accessed 23 Oct 2014
  26. Rosgen DL, Silvey HL (1996) Applied river morphology. Wildland Hydrology, Pagosa SpringsGoogle Scholar
  27. Smith DG (1979) Effects of channel enlargement by river ice processes on bankfull discharge in Alberta, Canada. Water Resour Res 15(2):469–475. doi: 10.1029/WR015i002p00469 CrossRefGoogle Scholar
  28. Smith DG (2003) 1100 years of ice-jam flooding in the Peace River Delta interpreted form flood bed sediments and ice-scarred trees. Proceedings of the 12th workshop on the hydraulics of ice covered rivers. Committee on River Ice Processes and the Environment (CRIPE), Edmonton, 19–20 June, 2003. Accessed 23 Oct 2014
  29. Smith DG, Pearce CM (2002) Ice jam-caused fluvial gullies and scour holes on northern river flood plains. Geomorphology 42:85–95. doi: 10.1016/S0169-555X(01)00076-9 CrossRefGoogle Scholar
  30. Smith DG, Reynolds DM (1983) Trees scars to determine the frequency and stage of high magnitude river ice drives and jams, Red Deer, Alberta. Can Water Resour J 8(3):77–94. doi: 10.4296/cwrj0803077 CrossRefGoogle Scholar
  31. Taylor S, Buffin-Bélanger T, Hétu B, Arsenault D (2008) An analysis of the spatio-temporal dynamics of ice jams in a small eastern Canadian River using dendrochronology. Proceedings of the Prairies Summit. Regina, du 1–5 June 2008 (pp 305–308). Accessed 13 Oct 2014
  32. Turcotte B, Morse B, Bergeron NE, Roy AG (2011) Sediment transport in ice-affected rivers. J Hydrol 409:561–577. doi: 10.1016/j.jhydrol.2011.08.009 CrossRefGoogle Scholar
  33. White KD (2003) Review of prediction methods for breakup ice jams. Can J Civ Eng 30:89–100CrossRefGoogle Scholar
  34. Williams GP (1978) Bank-Full Discharge of Rivers. Water Resour Res 14(6):1141–1154CrossRefGoogle Scholar
  35. Wolman MG, Leopold LB (1957) River floodplains: some observations on their formation. 282-C, Geological Survey Professionnal Paper, WashingtonGoogle Scholar
  36. Wuebben J, Gagnon J (1995) Ice jam flooding on the Missouri River near Williston, North Dakota. CREEL Report 95-19, OmahaGoogle Scholar
  37. Ye SQ, Doring J (2004) Simulation of the supercooling process and frazil evolution in turbulent flows. Can J Civ Eng 31:915–926. doi: 10.1139/L04-055 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Stephanie Morin
    • 1
  • Etienne Boucher
    • 1
  • Thomas Buffin-Belanger
    • 2
  1. 1.Département de géographieGEOTOP-UQAM, Université du Québec à MontréalMontrealCanada
  2. 2.Département de biologie, chimie et géographieCEN-UQAR, Université du Québec à RimouskiRimouskiCanada

Personalised recommendations