Natural Hazards

, Volume 77, Issue 1, pp 317–336 | Cite as

Visualizing uncertainties in a storm surge ensemble data assimilation and forecasting system

  • Thomas Höllt
  • M. Umer Altaf
  • Kyle T. Mandli
  • Markus Hadwiger
  • Clint N. Dawson
  • Ibrahim Hoteit
Original Paper

Abstract

We present a novel integrated visualization system that enables the interactive visual analysis of ensemble simulations and estimates of the sea surface height and other model variables that are used for storm surge prediction. Coastal inundation, caused by hurricanes and tropical storms, poses large risks for today's societies. High-fidelity numerical models of water levels driven by hurricane-force winds are required to predict these events, posing a challenging computational problem, and even though computational models continue to improve, uncertainties in storm surge forecasts are inevitable. Today, this uncertainty is often exposed to the user by running the simulation many times with different parameters or inputs following a Monte-Carlo framework in which uncertainties are represented as stochastic quantities. This results in multidimensional, multivariate and multivalued data, so-called ensemble data. While the resulting datasets are very comprehensive, they are also huge in size and thus hard to visualize and interpret. In this paper, we tackle this problem by means of an interactive and integrated visual analysis system. By harnessing the power of modern graphics processing units for visualization as well as computation, our system allows the user to browse through the simulation ensembles in real time, view specific parameter settings or simulation models and move between different spatial and temporal regions without delay. In addition, our system provides advanced visualizations to highlight the uncertainty or show the complete distribution of the simulations at user-defined positions over the complete time series of the prediction. We highlight the benefits of our system by presenting its application in a real-world scenario using a simulation of Hurricane Ike.

Keywords

Interactive Visualization Visual analysis Ensemble data Storm surge 

Notes

Acknowledgments

We would like to thank the anonymous reviewers for the constructive comments. Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST).

Supplementary material

Supplementary material 1 (mp4 33650 KB)

References

  1. Altaf MU, Butler T, Luo X, Dawson C, Mayo T, Hoteit I (2013) Improving short range ensemble Kalman storm surge forecasting using robust adaptive inflation. Mon Wea Rev 141:2705–2720CrossRefGoogle Scholar
  2. Altaf MU, Butler T, Mayo T, Luo X, Dawson C, Heemink AW, Hoteit I (2014) A comparison of ensemble Kalman filters for storm surge assimilation. Mon Wea Rev p in pressGoogle Scholar
  3. Anderson JL (2001) An ensemble adjustment Kalman filter for data assimilation. Mon Wea Rev 129:2884–2903CrossRefGoogle Scholar
  4. Berg R (2009) Tropical cyclone report: Hurricane Ike. National Hurricane CenterGoogle Scholar
  5. Bishop CH, Etherton BJ, Majumdar SJ (2001) Adaptive sampling with ensemble transform Kalman filter. Part I: theoretical aspects. Mon Wea Rev 129:420–436CrossRefGoogle Scholar
  6. Blake ES, Landsea CW, Gibney EJ (2011) The deadliest, costliest, and most intense united states tropical cyclones from 1851 to 2010 (and other frequently requested hurricane facts). NOAA Technical Memorandum NWSNHC-6Google Scholar
  7. Brown JD, Spencer T, Moeller I (2007) Modelling storm surge flooding of an urban area with particular reference to modelling uncertainties: a case study of canvey island, united kingdom. Water Resources Research 43Google Scholar
  8. Brown RA (2004) Animated visual vibrations as an uncertainty visualisation technique. In: Proceedings of International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, pp 84–89Google Scholar
  9. Bunya S, Dietrich J, Westerink J, Ebersole B, Smith J, Atkinson J, Jensen R, Resio D, Luettich R, Dawson C, Cardone V, Cox A, Powell M, Westerink H, Roberts H (2010) A high resolution coupled riverine flow, tide, wind, wind wave and storm surge model for southern louisiana and mississippi: Part i - model development and validation. Mon Wea Rev 138:345–377CrossRefGoogle Scholar
  10. Burgers G, van Leeuwen PJ, Evensen G (1998) On the analysis scheme in the ensemble Kalman filter. Mon Wea Rev 126:1719–1724CrossRefGoogle Scholar
  11. Butler T, Altaf MU, Dawson C, Hoteit I, Luo X, Mayo T (2012) Data assimilation within the advanced circulation (ADCIRC) modeling framework for hurricane storm surge forecasting. Mon Wea Rev 140:2215–2231CrossRefGoogle Scholar
  12. Cubasch U, Santer B, Hellbach A, Hegerl G, Hck H, Maier-Reimer E, Mikolajewicz U, Stssel A, Voss R (1994) Monte carlo climate change forecasts with a global coupled ocean-atmosphere model. Clim Dyn 10(1–2):1–19CrossRefGoogle Scholar
  13. Dietrich J, Westerink J, Kennedy A, Smith J, Jensen RE, Zijlema M, Holthuijsen L, Dawson C, Luettich R, Powell M, Cardone V, Cox A, Stone G, Pourtaheri H, Hope M, Tanaka S, Westerink L, Westerink HJ, Cobell Z (2011a) Hurricane gustav (2008) waves and storm surge: Hindcast, synoptic analysis and validation in Southern Louisiana. Mon Weather Rev 139:2488–2522CrossRefGoogle Scholar
  14. Dietrich J, Zijlema M, Westerink J, Holtjuijsen L, Dawson C Jr (2011b) Modeling hurricane wave and storm surge using integrally-coupled, scalable computations. Coast Eng 58:45–65CrossRefGoogle Scholar
  15. Dietrich J, Dawson C, Proft J, Howard M, Wells G, Fleming J, Jr RL, Westerink J, Cobell Z, Vitse M, Lander H, Blanton B, Szpilka C, Atkinson J (2013) Real-time forecasting and visualization of hurricane waves and storm surge using SWAN+ADCIRC and FigureGen, vol 156Google Scholar
  16. Dietrich JC, Bunya S, Westerink JJ, Ebersole BA, Smith JM, Atkinson JH, Jensen R, Resio DT, Luettich RA, Dawson C, Cardone VJ, Cox AT, Powell MD, Westerink HJ, Roberts HJ (2010) A high resolution coupled riverine flow, tide, wind, wind wave and storm surge model for southern louisiana and mississippi: Part ii - synoptic description and analyses of hurricanes katrina and rita. Mon Wea Rev 138:378–404CrossRefGoogle Scholar
  17. Djurcilov S, Kim K, Lermusiaux PFJ, Pang A (2001) Volume rendering data with uncertainty information. In: Data Visualization 2001: Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization, pp 243–252Google Scholar
  18. Djurcilov S, Kim K, Lermusiaux PFJ, Pang A (2002) Visualizing scalar volumetric data with uncertainty. Comput Gr 26:239–248CrossRefGoogle Scholar
  19. El Serafy GY, Mynett AE (2008) Improving the operational forecasting system of the stratified flow in osaka bay using an ensemble kalman filter-based steady state kalman filter. Water Res Res 44(6):1–19Google Scholar
  20. Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99:10,143–10,162CrossRefGoogle Scholar
  21. Ghil M (1989) Meteorological data assimilation for oceanographers. part i: description and theoretical framework. Dyn Atmos Oceans 13(3):171–218CrossRefGoogle Scholar
  22. Griethe H, Schumann H (2006) The visualization of uncertain data: methods and problems. In: Proceedings of SimVisGoogle Scholar
  23. Heap NS (1983) Storm surges 1967–1982. Geophys J R Astron Soc 74:331–376CrossRefGoogle Scholar
  24. Heemink A, Kloosterhuis H (1990) Data assimilation for non-linear tidal models. Int J Numer Methods Fluids 11(8):1097–1112CrossRefGoogle Scholar
  25. Heemink AW (1986) Storm surge prediction using kalman filtering. PhD Thesis, TU Delft (1986)Google Scholar
  26. Helton J (2008) Uncertainty and sensitivity analysis for models of complex systems. Comput Methods Transp 62:207–228Google Scholar
  27. Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. Am Stat 52(2):181–184Google Scholar
  28. Holland G (1980) An analytic model of the wind and pressure profiles in hurricanes. Mon Wea Rev 108:1212–1218CrossRefGoogle Scholar
  29. Höllt T, Chen G, Hansen CD, Hadwiger M (2013a) Extraction and visual analysis of seismic horizon ensembles. Eurographics 2013 Short Papers pp 69–72Google Scholar
  30. Höllt T, Magdy A, Chen G, Gopalakrishnan G, Hoteit I, Hansen CD, Hadwiger M (2013b) Visual analysis of uncertainties in ocean forecasts for planning and operation of off-shore structures. In: Proceedings of the IEEE Pacific visualization symposium, pp 59–66Google Scholar
  31. Höllt T, Magdy A, Zhan P, Chen G, Gopalakrishnan G, Hoteit I, Hansen CD, Hadwiger M (2014) Ovis: a framework for visual analysis of ocean forecast ensembles. IEEE Trans Vis Comput Graph 20(8):1114–1126CrossRefGoogle Scholar
  32. Hope ME, Westerink JJ, Kennedy AB, Kerr PC, Dietrich JC, Dawson C, Bender C, Smith JM, Jensen RE, Zijlema M, Holthuijsen LH, Luettich RA, Cardone MDPVJ, Cox AT, Pourtaheri H, Roberts HJ, Atkinson JH, Tanaka S, Westerink HJ, Westerink LG (2013) Hindcast and validation of hurricane ike (2008) waves, forerunner, and storm surge. J Goephys Res (Oceans) pp 4424–4460Google Scholar
  33. Hoteit I, Pham DT, Blum J (2002) A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific. J Mar Syst 36:101–127CrossRefGoogle Scholar
  34. Hoteit I, Korres G, Triantafyllou G (2005) Comparison of extended and ensemble based kalman filters with low and high-resolution primitive equations ocean models. Nonlinear Process Geophys 12:755–765CrossRefGoogle Scholar
  35. Hoteit I, Pham D, Triantafyllou G, Korres G (2008) A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon Weather Rev 136:317–334CrossRefGoogle Scholar
  36. Hoteit I, Hoar T, Gopalakrishnan G, Anderson J, Collins N, Cornuelle B, Kohl A, Heimbach P (2013) A MITgcm/DART ensemble analysis and prediction system with application to the gulf of mexico. Dyn Atmos Oceans 63:1–23CrossRefGoogle Scholar
  37. Houtekamer PL, Mitchell HL (1998) Data assimilation using an ensemble Kalman filter technique. Mon Wea Rev 126:796–811CrossRefGoogle Scholar
  38. Johnson CR, Sanderson AR (2003) A next step: visualizing errors and uncertainty. IEEE Comput Graph Appl 23(5):6–10CrossRefGoogle Scholar
  39. Kao D, Dungan J, Pang A (2001) Visualizing 2d probability distributions from eos satellite image-derived data sets: a case study. In: Proceedings of the IEEE visualization conference, pp 457–560Google Scholar
  40. Kao D, Kramer M, Love A, Dungan J, Pang A (2005) Visualizing distributions from multi-return lidar data to understand forest structure 42(1):35–47Google Scholar
  41. Kennedy A, Gravois U, Zachry B, Westerink J, Hope M, Dietrich J, Powell M, Cox A, Luettich R, Dean R (2011) Origin of the hurricane ike forerunner surge. Geophys Res Lett 38:L08608Google Scholar
  42. Lermusiaux PFJ, Chiu CS, Gawarkiewicz GG, Abbot P, Robinson AR, Miller RN, Haley PJ, Leslie WG, Majumdar SJ, Pang A, Lekien F (2006) Quantifying uncertainties in ocean predictions. Oceanography 19:90–103CrossRefGoogle Scholar
  43. Love A, Pang A, Kao D (2005) Visualizing spatial multivalue data. IEEE Comput Graph Appl 25(3):69–79CrossRefGoogle Scholar
  44. Luettich R, Westerink J (2005) ADCIRC: A parallel advanced circulation model for oceanic, coastal and estuarine waters. Users manual for version 45.08 available at www.adcirc.org/document/ADCIRCtitlepage.html
  45. Luo A, Kao D, Pang A (2003) Visualizing spatial distribution data sets. In: Proceedings of the symposium on data visualisation, pp 29–38Google Scholar
  46. Malanotte-Rizzoli P, Young RE, Haidvogel DB (1989) Initialization and data assimilation experiments with a primitive equation model. Dyn Atmos Oceans 13(3):349–378CrossRefGoogle Scholar
  47. Munshi A, Gaster B, Mattson TG, Fung J, Ginsburg D (2011) OpenCL Programming guide. Addison-Wesley ProfessionalGoogle Scholar
  48. Murty TS, Flather RA, Henry R (1986) The storm surge problem in the bay of bengal. Prog Oceanogr 16(4):195–233CrossRefGoogle Scholar
  49. Nerger L, Janjić T, Schröter J, Hiller W (2012) A unification of ensemble square root Kalman filters. Mon Wea Rev 140:2335–2345CrossRefGoogle Scholar
  50. Pang AT, Wittenbrink CM, Lodha SK (1997) Approaches to uncertainty visualization. Visual Comput 13:370–390CrossRefGoogle Scholar
  51. Pfaffelmoser T, Reitinger M, Westermann R (2011) Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields. Comput Graph Forum 30(3):951–960CrossRefGoogle Scholar
  52. Pham DT (2001) Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon Wea Rev 129:1194–1207CrossRefGoogle Scholar
  53. Pöthkow K, Hege HC (2011) Positional uncertainty of isocontours: condition analysis and probabilistic measures. IEEE Trans Vis Comput Graph 17(10):1393–1406CrossRefGoogle Scholar
  54. Pöthkow K, Weber B, Hege HC (2011) Probabilistic marching cubes. Comput Graph Forum 30(3):931–940CrossRefGoogle Scholar
  55. Potter K, Wilson A, Bremer PT, Williams D, Doutriaux C, Pascucci V, Johnson CR (2009) Ensemble-Vis: a framework for the statistical visualization of ensemble data. in: ieee workshop on knowledge discovery from climate data: prediction, Extremes and Impacts, pp 233–240Google Scholar
  56. Rhodes PJ, Laramee RS, Bergeron RD, Sparr TM (2003) Uncertainty visualization methods in isosurface rendering. In: EUROGRAPHICS 2003 Short Papers, pp 83–88Google Scholar
  57. Riveiro M (2007) Evaluation of uncertainty visualization techniques for information fusion. In: Proceedings of the 10th international conference on information fusion, pp 1–8Google Scholar
  58. Rost RJ, Licea-Kane BM, Ginsburg D, Kessenich JM, Lichtenbelt B, Malan H, Weiblen M (2009) OpenGL shading language. Addison-Wesley Professional,Google Scholar
  59. Sanyal J, Zhang S, Dyer J, Mercer A, Amburn P, Moorhead RJ (2010) Noodles: a tool for visualization of numerical weather model ensemble uncertainty. IEEE Trans Vis Comput Graph 16(6):1421–1430CrossRefGoogle Scholar
  60. Shreiner D, Sellers G, Kessenich JM, Licea-Kane BM (2013) OpenGL programming guide: the official guide to learning OpenGL. Addison-Wesley ProfessionalGoogle Scholar
  61. Sørensen JVT, Madsen H (2006) Parameter sensitivity of three kalman filter schemes for assimilation of water levels in shelf sea models. Ocean Model 11(3):441–463CrossRefGoogle Scholar
  62. Tippett MK, Anderson JL, Bishop CH, Hamill TM, Whitaker JS (2003) Ensemble square root filters. Mon Wea Rev 131:1485–1490CrossRefGoogle Scholar
  63. Westerink JJ, Luettich RA, Feyen JC, Atkinson JH, Dawson CN, Roberts HJ, Powell MD, Dunion JP, Kubatko EJ, Pourtaheri H (2008) A basin to channel scale unstructured grid hurricane storm surge model applied to southern louisiana. Mon Wea Rev 136:833–864CrossRefGoogle Scholar
  64. Whitaker JS, Hamill TM (2002) Ensemble data assimilation without perturbed observations. Mon Wea Rev 130:1913–1924CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.King Abdullah University of Science and Technology (KAUST)ThuwalKSA
  2. 2.Institute for Computational Engineering and SciencesUniversity of Texas at AustinAustinUSA
  3. 3.Columbia University in the City of New YorkNew YorkUSA

Personalised recommendations