Advertisement

Natural Hazards

, Volume 76, Issue 3, pp 1651–1665 | Cite as

Rising heat wave trends in large US cities

  • Dana Habeeb
  • Jason Vargo
  • Brian StoneJr.
Original Paper

Abstract

Exposures to dangerously high temperatures are a public health threat expected to increase with global climate change. Heat waves exacerbate the risks associated with heat exposure, and urban residents are particularly vulnerable to threats of heat waves due to the urban heat island effect. To understand how heat waves are changing over time, we examine changes in four heat wave characteristics from 1961 to 2010, frequency, duration, intensity, and timing, in 50 large US cities. Our purpose in measuring these trends is to assess the extent to which urban populations are increasingly exposed to heat-related health hazards resulting from changing trends in extreme heat. We find each of these heat wave characteristics to be rising significantly when measured over a five-decade period, with the annual number of heat waves increasing by 0.6 heat waves per decade for the average US city. Additionally, on average, we find the length of heat waves to be increasing by a fifth of a day, the intensity to be increasing 0.1 °C above local thresholds, and the length of the heat wave season (time between first and last heat wave) to be increasing by 6 days per decade. The regions most at risk due to increasing heat wave trends must plan appropriately to manage this growing threat by enhancing emergency preparedness plans and minimizing the urban heat island effect.

Keywords

Climate change Health effects Heat waves Extreme heat events 

Supplementary material

11069_2014_1563_MOESM1_ESM.pdf (41 kb)
Supplementary material 1 (PDF 41 kb)

References

  1. Akbari H, Menon S, Rosenfeld A (2009) Global cooling: increasing world-wide urban albedos to offset CO2. Clim Change 94:275–286CrossRefGoogle Scholar
  2. Altalo M, Hale M (2004) Turning weather forecasts into business forecasts. Environ Financ May:20–21 Google Scholar
  3. Anderson B, Bell M (2009) Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology 20:205–213. doi: 10.1097/EDE.0b013e318190ee08 CrossRefGoogle Scholar
  4. Anderson B, Bell M (2011) Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 US communities. Environ Health Perspect 119:210–218. doi: 10.1289/ehp.1002313 CrossRefGoogle Scholar
  5. Basara JB, Basara HG, Illston BG, Crawford KC (2010) The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv Meteorol 2010:10. doi: 10.1155/2010/230365 CrossRefGoogle Scholar
  6. Bell ML, Goldberg R, Hogrefe C, Kinney PL, Knowlton K, Lynn B, Rosenthal J, Rosenzweig C, Patz JA (2007) Climate change, ambient ozone, and health in 50 US cities. Clim Change 82:61–76CrossRefGoogle Scholar
  7. Bernard SM, McGeehin MA (2004) Municipal heat wave response plans. Am J Public Health 94:1520–1522CrossRefGoogle Scholar
  8. Bouchama A, Dehbi M, Mohamed G, Matthies F, Shoukri M, Menne B (2007) Prognostic factors in heat wave related-deaths: a meta-analysis. Arch Intern Med 167:2170–2176CrossRefGoogle Scholar
  9. CCSP (2008) Weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands., Department of Commerce, NOAA’s National Climatic Data Center, Washington, DC, USAGoogle Scholar
  10. CDC (2004) Extreme heat: a prevention guide to promote your personal health and safety. http://www.bt.cdc.gov/disasters/extremeheat/heat_guide.asp
  11. CDC (2006) Heat-related deaths—United States, 1999–2003. Morb Mortal Wkly Rep 55:796–798Google Scholar
  12. Conti S, Meli P, Minelli G, Solimini R, Toccaceli V, Vichi M, Beltrano C, Perini L (2005) Epidemiologic study of mortality during the Summer 2003 heat wave in Italy. Environ Res 98:390–399. doi: 10.1016/j.envres.2004.10.009 CrossRefGoogle Scholar
  13. Cooter EJ, LeDuc SK (1995) Recent frost date trends in the North-Eastern USA. Int J Climatol 15:65–75CrossRefGoogle Scholar
  14. Curriero FC, Heiner KS, Samet JM, Zeger SL, Strug L, Patz JA (2002) Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol 155:80–87CrossRefGoogle Scholar
  15. Davis RE, Knappenberger PC, Novicoff WM, Michaels PJ (2003) Decadal changes in summer mortality in US cities. Int J Biometeorol 47:166–175Google Scholar
  16. DeGaetano AT (1996) Recent trends in maximum and minimum temperature threshold exceedences in the northeastern United States. J Clim 9:1646–1660CrossRefGoogle Scholar
  17. Della-Marta P, Haylock M, Luterbacher J, Wanner H (2007) Doubled length of western European summer heat waves since 1880. J Geophys Res 112:11. doi: 10.1029/2007JD008510 CrossRefGoogle Scholar
  18. Easterling DR (2002) Recent changes in frost days and the frost-free season in the United States. Bull Am Meteorol Soc 83:1327–1332CrossRefGoogle Scholar
  19. Fall S, Niyogi D, Gluhovsky A, Pielke RA, Kalnay E, Rochon G (2010) Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis. Int J Climatol 30:1980–1993. doi: 10.1002/joc.1996 CrossRefGoogle Scholar
  20. Flynn A, McGreevy C, Mulkerrin E (2005) Why do older patients die in a heatwave? Q J Med 98:227–229. doi: 10.1093/qjmed/hci025 CrossRefGoogle Scholar
  21. Gaffen DJ, Ross RJ (1998) Increased summertime heat stress in the US. Nature 396:529–530CrossRefGoogle Scholar
  22. Greene S, Kalkstein LS, Mills DM, Samenow J (2011) An examination of climate change on extreme heat events and climate-mortality relationships in large U.S. cities. Weather Clim Soc 3:281–292. doi: 10.1175/WCAS-D-11-00055.1 CrossRefGoogle Scholar
  23. Hajat S, Kovats RS, Atkinson RW, Haines A (2002) Impact of hot temperatures on death in London: a time series approach. J Epidemiol Community Health 56:367–372CrossRefGoogle Scholar
  24. Hale RC, Gallo KP, Owen TW, Loveland TR (2006) Land use/land cover change effects on temperature trends at U.S. Climate normals stations. Geophys Res Lett 33:L11703. doi: 10.1029/2006GL026358 CrossRefGoogle Scholar
  25. Hayhoe K, Sheridan S, Kalkstein L, Greene S (2010) Climate change, heat waves, and mortality projections for Chicago. J Great Lakes Res 36:65–73CrossRefGoogle Scholar
  26. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation, Cambridge, UK, and New York, NY, USAGoogle Scholar
  27. Jacobsen LA, Kent M, Lee M, Mather M (2011) America’s aging population. Popul Bull 66:1–16 Google Scholar
  28. Kalkstein LS, Davis RE (1989) Weather and human mortality: an evaluation of demographic and interregional responses in the United States. Ann As Am Geogr 79:44–64CrossRefGoogle Scholar
  29. Kalkstein LS, Greene JS (1997) An evaluation of climate/mortality relationships in large US cities and the possible impacts of a climate change. Environ Health Perspect 105:84–93CrossRefGoogle Scholar
  30. Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423:528–531CrossRefGoogle Scholar
  31. Kalnay E, Cai M, Li H, Tobin J (2006) Estimation of the impact of land-surface forcings on temperature trends in eastern United States. J Geophys Res 111:D06106. doi: 10.1029/2005JD006555 CrossRefGoogle Scholar
  32. Koppe C, Kovats S, Jendritzky G, Menne B (2004) Heat-waves: risks and responses. World Health Organization, GenevaGoogle Scholar
  33. Kovats RS, Hajat S (2008) Heat stress and public health: a critical review. Annu Rev Public Health 29:41–55. doi: 10.1146/annurev.publhealth.29.020907.090843 CrossRefGoogle Scholar
  34. Kuglitsch FG, Toreti A, Xoplaki E, Della-Marta PM, Zerefos CS, Turkes M, Luterbacher J (2010) Heat wave changes in the eastern Mediterranean since 1960. Geophys Res Lett 37:L04802. doi: 10.1029/2009GL041841 Google Scholar
  35. Laaidi K, Zeghnoun A, Dousset B, Bretin P, Vandentorren S, Giraudet E, Beaudeau P (2012) The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environ Health Perspect 120:254–259CrossRefGoogle Scholar
  36. Lynn BH, Carlson TN, Rosenzweig C, Goldberg R, Druyan L, Cox J, Gaffin S, Parshall L, Civerolo K (2009) A modification to the NOAH LSM to simulate heat mitigation strategies in the New York City metropolitan area. J Appl Meteorol Climatol 48:199–216. doi: 10.1175/2008JAMC1774.1 CrossRefGoogle Scholar
  37. McCarthy MP, Best MJ, Betts RA (2010) Climate change in cities due to global warming and urban effects. Geophys Res Lett 37:L09705. doi: 10.1029/2010GL042845 Google Scholar
  38. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997. doi: 10.1126/science.1098704 CrossRefGoogle Scholar
  39. Miller NL, Hayhoe K, Jin J, Auffhammer M (2009) Climate, extreme heat, and electricity demand in California. J Appl Meteorol Climatol 47:1834–1844. doi: 10.1175/2007JAMC1480.1 CrossRefGoogle Scholar
  40. Naughton MP, Henderson A, Mirabelli MC, Kaiser R, Wilhelm JL, Kieszak SM, Rubin CH, McGeehin MA (2002) Heat-related mortality during a 1999 heat wave in Chicago. Am J Prev Med 22:221–227CrossRefGoogle Scholar
  41. NWS (2011) Natural hazard statisticsGoogle Scholar
  42. Oke TR (1987) Boundary layer climates. Routledge, New YorkGoogle Scholar
  43. Oleson K, Bonan G, Feddema J (2010) Effects of white roofs on urban temperature in a global climate model. Geophys Res Lett 37:L03701. doi: 10.1029/2009GL042194 Google Scholar
  44. Oven K, Curtis S, Reaney S, Riva M, Stewart M, Ohlemuller R, Dunn C, Nodwell S, Dominelli L, Holden R (2012) Climate change and health and social care: defining future hazard, vulnerability and risk for infrastructure systems supporting older people’s health care in England. Appl Geogr 33:16–24CrossRefGoogle Scholar
  45. Palecki MA, Changnon SA, Kunkel KE (2001) The nature and impacts of the July 1999 heat wave in the midwestern United States: learning from the lessons of 1995. Bull Am Meteorol Soc 82:1353–1367CrossRefGoogle Scholar
  46. Peng RD, Bobb JF, Tebaldi C, McDaniel L, Bell ML, Dominici F (2011) Toward a quantitative estimate of future heat wave mortality under global climate change. Environ Health Perspect 119:701–706. doi: 10.1289/ehp.1002430 CrossRefGoogle Scholar
  47. Revich B, Shaposhnikov D (2012) Climate change, heat waves, and cold spells as risk factors for increased mortality in some regions of Russia. Stud Russ Econ Dev 23:195–207. doi: 10.1134/S1075700712020116 CrossRefGoogle Scholar
  48. Robine JM, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, Michel JP, Herrmann FR (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biol 331:171–178. doi: 10.1016/j.crvi.2007.12.001 CrossRefGoogle Scholar
  49. Robinson PJ (2001) On the definition of a heat wave. J Appl Meteorol 40:762–775CrossRefGoogle Scholar
  50. Rosenzweig C, Solecki WD, Parshall L, Chopping M, Pope G, Goldberg R (2005) Characterizing the urban heat island in current and future climates in New Jersey. Glob Environ Change B Environ Hazards 6:51–62Google Scholar
  51. Rosenzweig C, Solecki W, Slosberg R (2006) Mitigating New York City’s heat island with urban forestry, living roofs, and light surfaces. New York state energy research and development authority report, p 123Google Scholar
  52. Sheridan SC (2007) A survey of public perception and response to heat warnings across four North American cities: an evaluation of municipal effectiveness. Int J Biometeorol 52:3–15CrossRefGoogle Scholar
  53. Smoyer-Tomic KE, Kuhn R, Hudson A (2003) Heat wave hazards: an overview of heat wave impacts in Canada. Nat Hazards 28:463–485CrossRefGoogle Scholar
  54. Steadman RG (1984) A universal scale of apparent temperature. J Climate Appl Meteorol 23:1674–1687CrossRefGoogle Scholar
  55. Stone B, Jr (2007) Urban and rural temperature trends in proximity to large US cities: 1951–2000. Int J Climatol 27:1801–1807. doi: 10.1002/joc.1555
  56. Stone B, Jr (2008) Urban sprawl and air quality in large US cities. J Environ Manag 86:688–698Google Scholar
  57. Stone B, Hess JJ, Frumkin H (2010) Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities? Environ Health Perspectives 118:1425–1428Google Scholar
  58. Stone B, Vargo J, Habeeb D (2012) Managing climate change in cities: will climate action plans work? Landsc Urban Plan 107:263–271Google Scholar
  59. Tan J, Zheng Y, Tang X, Guo C, Li L, Song G, Zhen X, Yuan D, Kalkstein AJ, Li F, Chen H (2010) The urban heat island and its impact on heat waves and human health in Shanghai. Int J Biometeorol 54:75–84. doi: 10.1007/s00484-009-0256-x CrossRefGoogle Scholar
  60. Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211. doi: 10.1007/s10584-006-9051-4 CrossRefGoogle Scholar
  61. UN DESA (2008) World urbanization prospects: the 2007 revision. Dep of Economic and Social Affairs UN, United Nations, New YorkGoogle Scholar
  62. Wainwright SH, Buchanan SD, Mainzer HM, Parrish RG, Sinks TH (1999) Cardiovascular mortality–the hidden peril of heat waves. Prehosp Disaster Med 14:222–231. doi: 10.1017/S1049023X00027679 Google Scholar
  63. Zhou Y, Shepherd JM (2010) Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies. Nat Hazards 52:639–668. doi: 10.1007/s11069-009-9406-z CrossRefGoogle Scholar
  64. Zhou L, Dickinson RE, Tian Y, Fang J, Li Q, Kaufmann RK, Tucker CJ, Myneni RB (2004) Evidence for a significant urbanization effect on climate in China. Proc Natl Acad Sci USA 101:9540–9544. doi: 10.1073/pnas.0400357101 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of City and Regional PlanningGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Center for Sustainability and the Global EnvironmentUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations