Natural Hazards

, Volume 75, Issue 1, pp 289–320

Analysis of non-stationary climate-related extreme events considering climate change scenarios: an application for multi-hazard assessment in the Dar es Salaam region, Tanzania

  • Alexander Garcia-Aristizabal
  • Edoardo Bucchignani
  • Elisa Palazzi
  • Donatella D’Onofrio
  • Paolo Gasparini
  • Warner Marzocchi
Original Paper


In this paper we have put forward a Bayesian framework for the analysis and testing of possible non-stationarities in extreme events. We use the extreme value theory to model temperature and precipitation data in the Dar es Salaam region, Tanzania. Temporal trends are modeled writing the location parameter of the generalized extreme value distribution in terms of deterministic functions of explanatory covariates. The analyses are performed using synthetic time series derived from a Regional Climate Model. The simulations, performed in an area around the Dar es Salaam city, Tanzania, take into account two Representative Concentration Pathways scenarios from the Intergovernmental Panel on Climate Change. Our main interest is to analyze extremes with high spatial and temporal resolution and to pursue this requirement we have adopted an individual grid box analysis approach. The approach presented in this paper is composed of the following key elements: (1) an advanced Bayesian method for the estimation of model parameters, (2) a rigorous procedure for model selection, and (3) uncertainty assessment and propagation. The results of our analyses are intended to be used for quantitative hazard and risk assessment and are presented in terms of hazard curves and probabilistic hazard maps. In the case study we found that for both the temperature and precipitation data, a linear trend in the location parameter was the only model performing better than the stationary one in the areas where evidence against the stationary model exists.


Non-stationary extreme events Climate change Multi-hazard Bayesian inference Extreme precipitation Extreme temperature Dar es Salaam, Tanzania 


  1. Atyeo J, Walshaw D (2012) A region-based hierarchical model for extreme rainfall over the UK, incorporating spatial dependence and temporal trend. Environmetrics 23(6):509–521. doi:10.1002/env.2155 CrossRefGoogle Scholar
  2. Beaulieu C, Seidou O, Ouarda T, Zhang X, Boulet G, Yagouti A (2008) Intercomparison of homogenization techniques for precipitation data. Water Resour Res 44(2):W02,425CrossRefGoogle Scholar
  3. Bell TL (1987) A space-time stochastic model of rainfall for satellite remote sensing studies. J Geophys Res 92:9631–9643CrossRefGoogle Scholar
  4. Bellprat O, Kotlarski S, Lüthi D, Schär C (2012) Objective calibration of regional climate models. J Geophys Res Atmos 117(D23). doi:10.1029/2012JD018262
  5. Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler B, Rockel B, Will A (2006) CLM–the climate version of LM: brief description and long-term applications. COSMO Newslett 6:225–235Google Scholar
  6. Brussolo E, von Hardenberg J, Ferraris L, Rebora N, Provenzale A (2008) Verification of quantitative precipitation forecasts via stochastic downscaling. J Hydrometeorol 9:1084–1094CrossRefGoogle Scholar
  7. Bucchignani E, Sanna A, Gualdi S, Castellari S, Schiano P (2013) Simulation of the climate of the XX century in the Alpine space. Nat Hazards 67:981–990. doi:10.1007/s11069-011-9883-82010 CrossRefGoogle Scholar
  8. Cannon A (2010) A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology. Hydrol Process 24(6):673–685CrossRefGoogle Scholar
  9. Carter TR, Jones JN, Lu X, Bhadwal S, Conde C, Mearns LO, O’Neill BC, Rounsevell MDA, Zurek MB (2007) New assessment methods and the characterisation of future conditions. In: Parry ML, Canziani OF, Palutikof JP, Linde PJVD, Hanson CE (eds) Climate change 2007. Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 133–171Google Scholar
  10. Coles S (2001) An introduction to statistical modeling of extreme values. Springer series in statistics, Springer-Verlag London limitedGoogle Scholar
  11. Davison AC, Padoan SA, Ribatet M (2012) Statistical modelling of spatial extremes. Stat Sci 27(2):161–186. doi:10.1214/11-STS376 CrossRefGoogle Scholar
  12. D’Onofrio D, Palazzi E, von Hardenberg J, Provenzale A, Calmanti S (2014) Stochastic rainfall downscaling of climate models. J Hydrometeorol 15:830–843. doi:10.1175/JHM-D-13-096.1 CrossRefGoogle Scholar
  13. Ekström M, Fowler H, Kilsby C, Jones P (2005) New estimates of future changes in extreme rainfall across the {UK} using regional climate model integrations. 2. Future estimates and use in impact studies. J Hydrol 300(1–4):234–251, doi: 10.1016/j.jhydrol.2004.06.019
  14. El-Adlouni S, Favre AC, Bobee B (2006) Comparison of methodologies to assess the convergence of Markov Chain Monte Carlo methods. Comput Stat Data Anal 50(10):2685–2701CrossRefGoogle Scholar
  15. El Adlouni S, Ouarda T, Zhang X, Roy R, Bobée B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43(3):W03,410CrossRefGoogle Scholar
  16. Fowler H, Ekström M, Kilsby C, Jones P (2005) New estimates of future changes in extreme rainfall across the {UK} using regional climate model integrations. 1. Assessment of control climate. J Hydrol 300(1–4): 212–233, doi:10.1016/j.jhydrol.2004.06.017
  17. Gelman A, Rubin D (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4): 457–472. doi:10.1214/ss/1177011136
  18. Gelman A, Carlin J, Stern H, Rubin D (2004) Bayesian data analysis, 2nd edn. Chapman and Hall/CRC, LondonGoogle Scholar
  19. Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo JM, Berger JO, Dawid AP, Smith AF (eds) Bayesian statistics 4. Oxford University Press, Oxford, pp 169–193Google Scholar
  20. Geyer CJ (1992) Practical Markov Chain Monte Carlo. Stat Sci 7(4):473–483. doi:10.1214/ss/1177011137
  21. Giorgi F, Hurrell JW, Mariucci MR (1997) Elevation dependency of the surface climate change signal: a model study. J Clim 10:288–296. doi:10.1175/1520-0442(1997)010 CrossRefGoogle Scholar
  22. Gualdi S, Somot S, Li L, Artale V, Adani M, Belluci A, Braun A, Calmanti S, Carillo A, Dell’Aquila A, Deque M, Dubois C, Elizalde A, Harzallah A, Jacob D, L’Heveder B, May W, Oddo P, Ruti P, Sanna A, Sannino G, Scoccimarro E, Sevault F, Navarra A (2013) The CIRCE simulations: regional climate change projections with realistic representation of the Mediterranean Sea. Bull Am Meteorol Soc 94:65–81. doi:10.1175/BAMS-D-11-00136.1 CrossRefGoogle Scholar
  23. Hanel M, Buishand TA, Ferro CAT (2009) A nonstationary index flood model for precipitation extremes in transient regional climate model simulations. J Geophys Res Atmos 114(D15): doi:10.1029/2009JD011712
  24. Houghton J, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, MAGoogle Scholar
  25. Hrafnkelsson B, Morris JS, Baladandayuthapani V (2012) Spatial modeling of annual minimum and maximum temperatures in Iceland. Meteorol Atmos Phys 116(1–2):43–61. doi:10.1007/s00703-010-0101-0 CrossRefGoogle Scholar
  26. Huth R, Kysely J, Pokorna L (2000) A GCM simulation of heat waves, dry spells, and their relationships to circulation. Clim Change 46(1–2):29–60. doi:10.1023/A:1005633925903 CrossRefGoogle Scholar
  27. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge, MAGoogle Scholar
  28. IPCC (2013) Climate change 2013: the physical science basis. In: Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, MAGoogle Scholar
  29. Jain S, Lall U (2001) Floods in a changing climate: does the past represent the future? Water Resour Res 37(12):3193–3205CrossRefGoogle Scholar
  30. Jeffreys H (1961) Theory of probability, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  31. Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q J R Meteorol Soc 81:158–171CrossRefGoogle Scholar
  32. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795CrossRefGoogle Scholar
  33. Katz R (2010) Statistics of extremes in climate change. Clim Change 100(1):71–76CrossRefGoogle Scholar
  34. Katz R, Parlange M, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25(8–12):1287–1304CrossRefGoogle Scholar
  35. Khaliq M, Ouarda T, Ondo JC, Gachon P, Bobée B (2006) Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review. J Hydrol 329(3–4):534–552. doi:10.1016/j.jhydrol.2006.03.004
  36. Koutsoyiannis D (2004) Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records/Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: II. Recherche empirique sur de longues séries de précipitations. Hydrol Sci J 49(4):591–610. doi:10.1623/hysj.49.4.591.54424 Google Scholar
  37. Kysely J (2002) Probability estimates of extreme temperature events: stochastic modelling approach vs. extreme value distributions. Stud Geophys Geod 46:93–112CrossRefGoogle Scholar
  38. Kysely J (2010) Recent severe heat waves in central Europe: how to view them in a long-term prospect? Int J Climatol 30(1):89–109. doi:10.1002/joc.1874 Google Scholar
  39. Lewis S, Raftery A (1997a) Estimating Bayes factors via posterior simulation with the Laplace–Metropolis estimator. J Am Stat As 92(438):648–655. doi:10.1080/01621459.1997.10474016
  40. Lewis SM, Raftery AE (1997b) Estimating Bayes factors via posterior simulation with the Laplace–Metropolis estimator. J Am Stat As 92(438):648–655Google Scholar
  41. Lovejoy S, Mandelbrot B (1985) Fractal properties of rain and a fractal model. Tellus 37A:209–232CrossRefGoogle Scholar
  42. Martins E, Stedinger J (2000) Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour Res 36(3):737–744CrossRefGoogle Scholar
  43. Marzocchi W, Garcia-Aristizabal A, Gasparini P, Mastellone ML, Di Ruocco A (2012) Basic principles of multi-risk assessment: a case study in Italy. Nat Hazards 62(2):551–573CrossRefGoogle Scholar
  44. Menabde M, Seed A, Harris D, Austin G (1997) Selfsimilar random fields and rainfall simulations. J Geophys Res C Oceans 102D:13,509–13,515CrossRefGoogle Scholar
  45. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat As 44:335–341CrossRefGoogle Scholar
  46. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1081–1092CrossRefGoogle Scholar
  47. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756. doi:10.1038/nature08823
  48. Newton MA, Raftery AE (1994) Approximate Bayesian inference with the weighted likelihood bootstrap. J R Stat Soc Ser B 56(1):3–48Google Scholar
  49. Ouarda T, El-Adlouni S (2011) Bayesian nonstationary frequency analysis of hydrological variables. J Am Water Resour As 47(3):496–505CrossRefGoogle Scholar
  50. Perica S, Foufoula-Georgiou E (1996) Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling description. J Geophys Res 101(D21):26,347–26,361CrossRefGoogle Scholar
  51. Raftery A (1995) Bayesian model selection in social research. Soc Methodol 25:111–163CrossRefGoogle Scholar
  52. Raftery AE (1996) Hypothesis testing and model selection. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov Chain Monte Carlo in practice. Chapman and Hill, London, pp 165–187Google Scholar
  53. Raftery AE, Newton MA, Satagopan JM, Krivitsky PN (2007) Estimating the integrated likelihood via posterior simulation using the Harmonic mean identity. Bayesian Stat 8:1–45Google Scholar
  54. Rebora N, Ferraris L, von Hardenberg J, Provenzale A (2006a) Rainfall downscaling and flood forecasting: a case study in the Mediterranean area. Nat Hazards Earth Syst Sci 6:611–619CrossRefGoogle Scholar
  55. Rebora N, Ferraris L, von Hardenberg J, Provenzale A (2006b) RainFARM: rainfall downscaling by a filtered autoregressive model. J Hydrometeorol 7:724–738CrossRefGoogle Scholar
  56. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorologische Zeitschrift 17:347–348CrossRefGoogle Scholar
  57. Sang H, Gelfand A (2010) Continuous spatial process models for spatial extreme values. J Agric Biol Environ Stat 15:49–65. doi:10.1007/s13253-009-0010-1 CrossRefGoogle Scholar
  58. Scotto MG, Barbosa SM, Alonso AM (2011) Extreme value and cluster analysis of European daily temperature series. J Appl Stat 38(12):2793–2804. doi:10.1080/02664763.2011.570317 CrossRefGoogle Scholar
  59. Seidou O, Ramsay A, Nistor I (2011) Climate change impacts on extreme floods II: improving flood future peaks simulation using non-stationary frequency analysis. Nat Hazards 1–12Google Scholar
  60. Seidou O, Ramsay A, Nistor I (2012) Climate change impacts on extreme floods I: combining imperfect deterministic simulations and non-stationary frequency analysis. Nat Hazards 1–13. doi:10.1007/s11069-011-0052-x
  61. Siliverstovs B, Ötsch R, Kemfert C, Jaeger CC, Haas A, Kremers H (2010) Climate change and modelling of extreme temperatures in Switzerland. Stoch Environ Res Risk Assess 24(2):311–326. doi:10.1007/s00477-009-0321-3 CrossRefGoogle Scholar
  62. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, MAGoogle Scholar
  63. Sorooshian S, Hsu Kl, Coppola E, Tomassetti B, Verdecchia M, Visconti G (eds) (2008) Hydrological modelling and the water cycle coupling the atmospheric and hydrological models. In: Water science and technology library, vol 63Google Scholar
  64. Stephenson DB, Diaz HF, Murnane RJ (2008) Definition, diagnosis, and origin of extreme weather and climate events. In: Climate extremes and society. Cambridge University Press, Cambridge, pp 11–23Google Scholar
  65. Steppeler J, Doms G, Schattler U, Bitzer H, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82(1–4):75–96. doi:10.1007/s00703-001-0592-9, 4th SRNWP workshop on nonhydrostatic modelling, BAD ORB, Germany, Sep, 2001
  66. von Hardenberg J, Ferraris L, Rebora N, Provenzale A (2007) Meteorological uncertainty and rainfall downscaling. Nonlinear Proc Geophys 14:193–199CrossRefGoogle Scholar
  67. Waymire EC, Gupta VK, Rodriguez-Iturbe I (1984) A spectral theory of rainfall intensity at the meso-beta scale. Water Resour Res 20:1453–1465CrossRefGoogle Scholar
  68. Zhang X, Zwiers F, Li G (2004) Monte Carlo experiments on the detection of trends in extreme values. J Clim 17(10):1945–1952CrossRefGoogle Scholar
  69. Zwiers F, Kharin VV (1998) Changes in the extremes of the climate simulated by CCCGCM2 under CO2 doubling. J Clim 11:2200–2222CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alexander Garcia-Aristizabal
    • 1
  • Edoardo Bucchignani
    • 2
  • Elisa Palazzi
    • 3
  • Donatella D’Onofrio
    • 4
  • Paolo Gasparini
    • 1
  • Warner Marzocchi
    • 5
  1. 1.Center for the Analysis and Monitoring of Environmental Risk (AMRA)NaplesItaly
  2. 2.Centro Euro-Mediterraneao sui Cambiamenti Climatici (CMCC)-CIRACapuaItaly
  3. 3.Institute of Atmospheric Sciences and Climate (ISAC)-CNRTurinItaly
  4. 4.Department of PhysicsUniversità di TorinoTurinItaly
  5. 5.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly

Personalised recommendations