Advertisement

Natural Hazards

, Volume 74, Issue 3, pp 2279–2304 | Cite as

A review of multiple natural hazards and risks in Germany

  • Heidi Kreibich
  • Philip Bubeck
  • Michael Kunz
  • Holger Mahlke
  • Stefano Parolai
  • Bijan Khazai
  • James Daniell
  • Tobia Lakes
  • Kai Schröter
Review Paper

Abstract

Although Germany is not among the most hazard-prone regions of the world, it does experience various natural hazards that have caused considerable economic and human losses in the past. Moreover, risk due to natural hazards is expected to increase in several regions of Germany if efficient risk management is not able to accommodate global changes. The most important natural hazards, in terms of past human and economic damage they caused, are storms, floods, extreme temperatures and earthquakes. They all show a pronounced spatial and temporal variability. In the present article, a review of these natural hazards, associated risks and their management in Germany is provided. This review reveals that event and risk analyses, as well as risk management, predominantly focus on one single hazard, generally not considering the cascading and conjoint effects in a full multi-hazard and risks approach. However, risk management would need integrated multi-risk analyses to identify, understand, quantify and compare different natural hazards and their impacts, as well as their interactions.

Keywords

Past natural hazard events Risk analysis Risk management Multi-risk approaches Storms Floods Extreme temperatures Earthquakes Germany 

Notes

Acknowledgments

We thank Sergey Tyagunov for having provided an updated version of Fig. 5. This work has partly been undertaken under the framework of CEDIM—Center for Disaster Management and Risk Reduction Technology (www.cedim.de), a joint venture between the German Research Centre for Geosciences (GFZ) and the Karlsruhe Institute of Technology (KIT) as well as partly been undertaken under the framework of the EU FP7 funded project MATRIX—New Multi-Hazard and Multi-Risk Assessment Methods for Europe.

References

  1. Allmann A, Rauch E, Smolka A (1998) New paleoseismological findings on major earthquakes in Central Europe. Possible consequences for the earthquake loss potential in Germany. In: Proceedings 11th ECEE Paris/France, RotterdamGoogle Scholar
  2. American Meteorological Society (2012) Glossary of metrology. http://glossary.ametsoc.org. Accessed May 2013
  3. Apel H, Thieken AH, Merz B, Blöschl G (2006) A probabilistic modelling system for assessing flood risks. Nat Hazards 38(1–2):79–100. doi: 10.1007/s11069-005-8603-7 CrossRefGoogle Scholar
  4. Apel H, Aronica GT, Kreibich H, Thieken AH (2009) Flood risk analyses—how detailed do we need to be? Nat Hazards 49(1):79–98. doi: 10.1007/s11069-008-9277-8 CrossRefGoogle Scholar
  5. Banks JC, Camp JV, Abkowitz MD (2014) Adaptation planning for floods: a review of available tools. Nat Hazards 70:1327–1337. doi: 10.1007/s11069-013-0876-7 CrossRefGoogle Scholar
  6. Barnett AG, Hajat S, Gasparrini A, Rocklöv J (2012) Cold and heat waves in the United States. Environ Res 1(112):218–224. doi: 10.1016/j.envres.2011.12.010 CrossRefGoogle Scholar
  7. Barredo JI (2007) Major flood disasters in Europe: 1950–2005. Nat Hazards 42(1):125–148. doi: 10.1007/s11069-006-9065-2 CrossRefGoogle Scholar
  8. Barredo JI (2010) No upward trend in normalised windstorm losses in Europe. Nat Hazards Earth Syst Sci 10:97–104CrossRefGoogle Scholar
  9. BBK (2010) Bundesamt für Bevölkerungsschutz und Katastrophenhilfe (2010) Neue Strategie zum Schutz der Bevölkerung in Deutschland. http://www.bbk.bund.de/SharedDocs/Downloads/BBK/DE/Publikationen/Wissenschaftsforum/Band-4_NeueStrategie.pdf?__blob=publicationFile. Accessed 15 March 2014
  10. Bedka KM (2011) Overshooting cloud top detections using MSG SEVIRI Infrared brightness temperatures and their relationship to severe weather over Europe. Atmos Res 99:175–189CrossRefGoogle Scholar
  11. Beurton S, Thieken A (2009) Seasonality of floods in Germany. Hydrol Sci J 54(1):62–76. doi: 10.1623/hysj.54.1.62 CrossRefGoogle Scholar
  12. Bittner R, Günther K, Merz B (2009) Naturkatastrophen in Deutschland. Hochwasserschutz und Katastrophenmanagement 6:7–10Google Scholar
  13. BMU (2009) Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (2009) Dem Klimawandel begegnen—Die Deutsche Anpassungsstrategie. BMU, BerlinGoogle Scholar
  14. Bogenrieder O (2004) Vortrag auf dem Dresdner Forum zur Versicherungsmathematik 2004. http://www.math.tudresden.de/sto/schmidt/verein/2004_Dresdner_Forum/bogenrieder.pdf. Accessed 24 Oct 2012
  15. Bovolo CI, Abele SJ, Bathurst JC, Caballero D, Ciglan M, Eftichidis G, Simo B (2009) A distributed framework for multi-risk assessment of natural hazards used to model the effects of forest fire on hydrology and sediment yield. Comput Geosci 35(5):924–945. doi: 10.1016/j.cageo.2007.10.010 CrossRefGoogle Scholar
  16. Brasseur G (2001) Development and application of a physical approach to estimating wind gusts. Mon Wea Rev 129:5–25. doi: 10.1175/1520-0493(2001)1292.0.CO;2 CrossRefGoogle Scholar
  17. Brombach J (2012) Modifikation der Strömung über Mittelgebirgen und die Auswirkungen auf das Auftreten hochreichender Konvektion. Diploma Thesis, Institute for Meteorology and Climate Research, Karlsruher Institute of Technology (KIT)Google Scholar
  18. Bundesregierung (2013)—Bericht zur Flutkatastrophe 2013—Katastrophenhilfe, Entschädigung, Wiederaufbau. Deutscher Bundestag. Drucksache 17/14743, available at: http://dip21.bundestag.de/dip21/btd/17/147/1714743.pdf. Accessed 12 Nov 2013
  19. Camelbeeck T, Meghraoui M (1998) Geological and geophysical evidence for large paleoearthquakes with surface faulting in the Roer Grabe (northwest Europe). Geophys J Int 132:347–362CrossRefGoogle Scholar
  20. Camelbeeck T, Martin H, Vanneste K, Meghraoui M, Verbeeck K, Brondeel M (2000a) Geomorphic evidence of active faulting in slow deformation areas: the example of the Lower Rhine Embayment. In: Proceedings of evaluation of the potential for large earthquakes in regions of present day low seismic activity in Europe. Han-sur-Lesse, Belgium, pp 31–34Google Scholar
  21. Camelbeeck T, Vanneste K, Verbeeck K, Meghraoui M, Pelzing R, Hinzen K, Dost B, van der Berg M (2000b) Long term seismic activity in the Lower Rhine Embayment. European Centre for Geodynamics and seismology workshop. Evaluation of the Potential for large Earthquakes in regions of present day low seismic activity in Europe. Han-sur-Lesse, Belgium, pp 35–38Google Scholar
  22. Changnon SA (1970) Hailstreaks. J Atmos Sci 27:109–125CrossRefGoogle Scholar
  23. Changnon SA (2003) Shifting economic impacts from weather extremes in the United States: a result of societal changes, not global warming. Nat Hazards 29:273–290. doi: 10.1023/A:1023642131794 CrossRefGoogle Scholar
  24. Damian T (2011) Blitzdichte im Zusammenhang mit Hagelereignissen in Deutschland und Baden-Württemberg. Seminar Thesis, Institute for Meteorology and Climate Research, Karlsruher Institute of Technology (KIT)Google Scholar
  25. Danard M, Munro A, Murty T (2003) Storm surge hazard in Canada. Nat Hazards 28(2–3):407–431. doi: 10.1023/A:1022990310410 CrossRefGoogle Scholar
  26. Daniell JE (2010) Deterministic Earthquake Scenarios for the Northern Rhine Region (Deterministische Erdbeben Szenarien für die nördliche Rhein-Region), CEDIM Earthquake Loss Estimation Series. Research Report No. 10-02, CEDIM, Karlsruhe, GermanyGoogle Scholar
  27. de Moel H, van Alphen J, Aerts JCJH (2009) Flood maps in Europe—methods, availability and use. Nat Hazards Earth Syst Sci 9:1–13CrossRefGoogle Scholar
  28. Della-Marta PM, Mathis H, Frei C, Liniger MA, Kleinn J, Appenzeller C (2009) The return period of wind storms over Europe. Int J Climatol 29:437–459. doi: 10.1002/joc.1794 CrossRefGoogle Scholar
  29. DIN1055-4 (2005) Einwirkungen auf Tragwerke—Teil 4: Windlasten. Deutsches Institut für Normung, BerlinGoogle Scholar
  30. DIN4149 (1981) Bauten in deutschen Erdbebengebieten. Lastannahmen, Bemessung Ausführung üblicher Hochbauten. Deutsches Institut für Normung/Normenausschuß, BerlinGoogle Scholar
  31. DIN4149 (2005) Bauten in deutschen Erdbebengebieten. Lastannahmen, Bemessung Ausführung üblicher Hochbauten. Vorgesehen als Ersatz für DIN 4149-1:1981-04 4149-1/A1:1992-12. Normenausschuß im Bauwesen (NABau) im DIN Deutsches Normung e. V., April 2005, Berlin [also includes information on DIN 4149 (1957)]Google Scholar
  32. DKKV (2003) Deutsches Komitee für Katastrophenvorsorge (2003) Hochwasservorsorge in Deutschland—Lernen aus der Katastrophe 2002 im Elbegebiet. Schriftenreihe des DKKV 29, lessons learned. DKKV, BonnGoogle Scholar
  33. Dotzek N (2001) Tornadoes in Germany. Atmos Res 56:233–251CrossRefGoogle Scholar
  34. Dyke G, Gill S, Davies R, Betorz F, Andalsvik Y, Cackler J, Dos Santos W, Dunlop K, Ferreira I, Kebe F, Lamboglia E, Matsubara Y, Nikolaidis V, Ostoja-Starzewski S, Sakita M, Verstappen N (2011) Dream project: applications of earth observations to disaster risk management. Acta Astronaut 68(1–2):301–315. doi: 10.1016/j.actaastro.2010.06.018 CrossRefGoogle Scholar
  35. EM-DAT (2014) EM-DAT: The OFDA/CRED international disaster database. Université Catholique de Louvain, Brussels, Belgium. www.emdat.be. Data download 16 May 2014
  36. European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the community action in the field of water policy. Off J L 327Google Scholar
  37. European Commission (2001) Directive 2001/42/EC of the European Parliament and of the Council of 27 June 2001 on the assessment of the effects of certain plans and programmes on the environmentGoogle Scholar
  38. European Commission (2007) Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. Off J EU 6, L 288/27–34Google Scholar
  39. European Commission (2011a) Directive 2011/92/EU of the European Parliament and of the Council of 13 December 2011 on the assessment of the effects of certain public and private projects on the environmentGoogle Scholar
  40. European Commission (2011b) Risk assessment and mapping guidelines for disaster management. Commission staff working paper, European Union. http://ec.europa.eu/echo/civil_protection/civil/pdfdocs/prevention/COMM_PDF_SEC_2010_1626_F_staff_working_document_en.pdf. Accessed 15 March 2014
  41. European Commission (2014) Proposal for a Directive of the European Parliament and of the Council amending Directive 2011/92/EU on the assessment of the effects of certain public and private projects on the environmentGoogle Scholar
  42. Falter D, Dung VN, Vorogushyn S, Schröter K, Hundecha Y, Kreibich H, Apel H, Theisselmann F, Merz B (2014) Continuous, large-scale simulation model for flood risk assessments: proof-of-concept. J Flood Risk Manage. doi: 10.1111/jfr3.12105
  43. Fischer EM, Schär C (2009) Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Clim Dyn 33:917–935. doi: 10.1007/s00382-008-0473-8 CrossRefGoogle Scholar
  44. Förster S, Kuhlmann B, Lindenschmidt KE, Bronstert A (2008) Assessing flood risk for a rural detention area. Nat Hazards Earth Syst Sci 8:311–322. doi: 10.5194/nhess-8-311-2008 CrossRefGoogle Scholar
  45. Gabriel K, Endlicher W (2011) Urban and rural mortality during heat waves in Berlin and Brandenburg, Germany. Environ Pollut 159(8–9):2044–2050. doi: 10.1016/j.envpol.2011.01.016 CrossRefGoogle Scholar
  46. Gall M, Borden KA, Cutter SL (2009) When do losses count? Six fallacies of natural hazards loss data. Bull Am Meteorol Soc 90(6):799–809. doi: 10.1175/2008BAMS2721.1 CrossRefGoogle Scholar
  47. Gaume E, Bain V, Bernardara P, Newinger O, Barbuc M, Bateman A, Blaškovičová L, Blöschl G, Borga M, Dumitrescu A, Daliakopoulos I, Garcia J, Irimescu A, Kohnova S, Koutroulis A, Marchi L, Matreata S, Medina V, Preciso E, Sempere-Torres D, Stancalie G, Szolgay J, Tsanis I, Velasco D, Viglione A (2009) A compilation of data on European flash floods. J Hydrol 367(1–2):70–78. doi: 10.1016/j.jhydrol.2008.12.028 CrossRefGoogle Scholar
  48. GDV (2003) 2003 Yearbook—The German Insurance Industry. Verlag Versicherungswirtschaft, Karlsruhe, German Insurance Association (GDV). https://secure.gdv.de/gdv-veroeffentlichungen/upload_img/67_dwl.pdf. Accessed 8 Oct 2010
  49. GDV (2008) Geo-Informationssystem ZÜRS Geo: Zonierungssystem für Überschwemmungsrisiko und Einschätzung von Umweltrisiken. German Insurance Association (GDV). http://www.gdv.de/2008/08/geo-informationssystem-zuers-geo-zonierungssystem-fuer-ueberschwemmungsrisiko-und-einschaetzung-von-umweltrisiken/. Accessed 24 Oct 2012
  50. GDV (2013) Erste Schadenbilanz: Hochwasser 2013 verursacht 180.000 versicherte Schäden in Höhe von fast 2 Milliarden Euro. Pressemitteilung der Versicherungswirtschaft 2.7.2013. http://www.gdv.de/2013/07/hochwasser-2013-verursacht-180-000-versicherte-schaeden-in-hoehe-von-fast-2-milliarden-euro/. Accessed 12 Nov 2013
  51. German Water (2005) Act to improve preventive flood control 2005. Federal Law Gazette I of 9 May 2005, p 1224Google Scholar
  52. Gosling SN, Lowe JA, McGregor GR, Pelling M, Malamud BD (2009) Associations between elevated atmospheric temperature and human mortality: a critical review of the literature. Clim Change 92(3–4):299–341. doi: 10.1007/s10584-008-9441-x CrossRefGoogle Scholar
  53. Graewe U, Burchard H (2012) Storm surges in the Western Baltic Sea: the present and a possible future. Clim Dyn 39(1–2):165–183. doi: 10.1007/s00382-011-1185-z CrossRefGoogle Scholar
  54. Greiving S, Fleischhauer M (2006) Spatial planning response towards natural and technological hazards. In: Schmidt-Thome P (ed) Natural and technological hazards and risks affecting the spatial development of European regions. Geological Survey of Finland, Special Paper 42, pp 109–123Google Scholar
  55. Grünthal G, Wahlström R (2012) The European mediterranean earthquake catalogue (EMEC) for the last millennium. J Seismol 16:535–570. doi: 10.1007/s10950-012-9302-y CrossRefGoogle Scholar
  56. Grünthal G, Mayer-Rosa D, Lenhardt WA (1998) Abschätzung der Erdbebengefährdung für die D-S-CH-Staaten-Deutschland, Österreich, Schweiz. Bautechnik 10:753–767CrossRefGoogle Scholar
  57. Grünthal G, Thieken AH, Schwarz J, Radtke KS, Smolka A, Merz B (2006) Comparative risk assessment for the city of Cologne, Germany—storms, floods, earthquakes. Nat Hazards 38(1–2):21–44. doi: 10.1007/s11069-005-8598-0 CrossRefGoogle Scholar
  58. Handmer J, Abrahams J, Betts R, Dawson M (2005) Towards a consistent approach to disaster loss assessment across Australia. Aust J Emerg Manage. 20:10–18Google Scholar
  59. Harlan SL, Ruddell DM (2011) Climate change and health in cities: impacts of heat and air pollution and potential co-benefits from mitigation and adaption. Curr Opin Environ Sustain 3:126–134. doi: 10.1016/j.cosust.2011.01.001 CrossRefGoogle Scholar
  60. Heneka P, Hofherr T (2011) Probabilistic winter storm risk assessment for residential buildings in Germany. Nat Hazards 56:815–831. doi: 10.1007/s11069-010-9593-7 CrossRefGoogle Scholar
  61. Heneka P, Hofherr T, Ruck B, Kottmeier C (2006) Winter storm risk of residential structures—model development and application to the German state of Baden-Württemberg. Nat Hazards Earth Syst Sci 6:721–733. doi: 10.5194/nhess-6-721-2006 CrossRefGoogle Scholar
  62. Hofherr T, Kunz M (2010) Extreme wind climatology of winter storms in Germany. Clim Res 41:105–123. doi: 10.3354/cr00844 CrossRefGoogle Scholar
  63. ICPR (2001) Atlas of flood danger and potential damage due to extreme floods of the Rhine. International Commission for the Protection of the Rhine, KoblenzGoogle Scholar
  64. IKSE (2003) Internationale Kommission zum Schutz der Elbe (2003) Aktionsplan Hochwasserschutz Elbe. IKSE, Magdeburg, GermanyGoogle Scholar
  65. Kaplan S, Garrick BJ (1981) On the quantitative definition of risk. Risk Anal 1(1):11–27. doi: 10.1111/j.1539-6924.1981.tb01350.x CrossRefGoogle Scholar
  66. Kappes MS, Keiler M, von Elverfeldt K, Glade T (2012) Challenges of analyzing multi-hazard risk: a review. Nat Hazards 64:1925–1958. doi: 10.1007/s11069-012-0294-2 CrossRefGoogle Scholar
  67. Kasperski M (2002) A new wind zone map of Germany. J Wind Eng Ind Aerodyn 90:1271–1287. doi: 10.1016/S0167-6105(02)00257-X CrossRefGoogle Scholar
  68. Kelman I (2002) Physical flood vulnerability of residential properties in coastal, Eastern England. PhD Thesis, University of CambridgeGoogle Scholar
  69. Klawa M, Ulbrich U (2003) A model for the estimation of storm losses and the identification of severe winter storms in Germany. Nat Hazards Earth Syst Sci 3:725–732. doi: 10.5194/nhess-3-725-2003 CrossRefGoogle Scholar
  70. Kleist L, Thieken AH, Köhler P, Müller M, Seifert I, Borst D, Werner U (2006) Estimation of the regional stock of residential buildings as a basis for a comparative risk assessment in Germany. Nat Hazards Earth Syst Sci 6:541–552. doi: 10.5194/nhess-6-541-2006 CrossRefGoogle Scholar
  71. Kok M, Huizinga HJ, Vrouwenvelder ACWM, Barendregt A (2005) Standaardmethode 2004—schade en slachtoffers als gevolg van overstromingen. RWS Dienst Weg- en WaterbouwkundeGoogle Scholar
  72. Kreibich H, Thieken AH (2008) Assessment of damage caused by high groundwater inundation. Water Resour Res 44:W09409. doi: 10.1029/2007WR006621 CrossRefGoogle Scholar
  73. Kreibich H, Thieken AH (2009) Coping with floods in the city of Dresden, Germany. Nat Hazards 51(3):423–436. doi: 10.1007/s11069-007-9200-8 CrossRefGoogle Scholar
  74. Kreibich H, Thieken AH, Petrow T, Müller M, Merz B (2005) Flood loss reduction of private households due to building precautionary measures—lessons learned from the Elbe flood in August 2002. Nat Hazards Earth Syst Sci 5(1):117–126. doi: 10.5194/nhess-5-117-2005 CrossRefGoogle Scholar
  75. Kreibich H, Müller M, Thieken AH, Merz B (2007) Flood precaution of companies and their ability to cope with the flood in August 2002 in Saxony, Germany. Water Resour Res 43:W03408. doi: 10.1029/2005WR004691 CrossRefGoogle Scholar
  76. Kreibich H, Piroth K, Seifert I, Maiwald H, Kunert U, Schwarz J, Merz B, Thieken AH (2009) Is flow velocity a significant parameter in flood damage modelling? Nat Hazards Earth Syst Sci 9(5):1679–1692. doi: 10.5194/nhess-9-1679-2009 CrossRefGoogle Scholar
  77. Kreibich H, Seifert I, Merz B, Thieken AH (2010) Development of FLEMOcs—a new model for the estimation of flood losses in companies. Hydrol Sci J 55(8):1302–1314. doi: 10.1080/02626667.2010.529815 CrossRefGoogle Scholar
  78. Kreibich H, Meyer S, Diekkrüger B (2011) Weiterentwicklung von FLEMOps zur Modellierung von Grundhochwasserschäden und Wohngebäuden. Hydrol Wasserbewirtsch 55(6):300–309Google Scholar
  79. Kreibich H, van den Bergh JCJM, Bouwer LM, Bubeck P, Ciavola P, Green C, Hallegatte S, Logar I, Meyer V, Schwarze R, Thieken AH (2014) Costing natural hazards. Nat Clim Change (in press)Google Scholar
  80. Kron W (2004) Zunehmende Überschwemmungsschäden: Eine Gefahr für die Versicherungswirtschaft? ATV-DVWK: Bundestagung 15.-16.09.2004 in Würzburg, DCM, Meckenheim, pp 47–63Google Scholar
  81. Kron W, Steuer M, Löw P, Wirtz A (2012) How to deal properly with a natural catastrophe database—analysis of flood losses. Nat Hazards Earth Syst Sci 12:535–550. doi: 10.5194/nhess-12-535-2012 CrossRefGoogle Scholar
  82. Kropp J, Block A, Reusswig F, Zickfeld K, Schellnhuber HJ (2006) Semiquantitative assessment of regional climate vulnerability: the North-Rhine Westphalia study. Clim Change 76(3–4):265–290. doi: 10.1007/s10584-005-9037-7 CrossRefGoogle Scholar
  83. Kunz M (2007) The skill of convective parameters and indices to predict isolated and severe thunderstorms. Nat Hazards Earth Syst Sci 7:327–334CrossRefGoogle Scholar
  84. Kunz M, Puskeiler M (2010) High-resolution assessment of the Hail hazard over complex terrain from radar and insurance data. Met Z 19:427–439. doi: 10.1127/0941-2948/2010/0452 CrossRefGoogle Scholar
  85. Kuttler W (2011) Climate change in urban areas. Part 2, measures. Environ Sci Europe 23(21):1–15. doi: 10.1186/2190-4715-23-21 Google Scholar
  86. Lagadec P (2004) Understanding the French 2003 heat wave experience: beyond the heat, a multi-layered challenge. J Conting Crisis Manag 12(4):160–169. doi: 10.1111/j.0966-0879.2004.00446.x CrossRefGoogle Scholar
  87. Landtag Rheinland-Pfalz (2005) Antwort des Ministeriums der Finanzen auf die Große Anfrage der Fraktion der CDU. Hilfe bei Hochwasser- und Elementarschäden. Drucksache 14/4195Google Scholar
  88. Lang D, Molina-Palacios S, Lindholm C, Balan S (2012) Deterministic earthquake damage and loss assessment for the city of Bucharest, Romania. J Seismol 16(1):67–88. doi: 10.1007/s10950-011-9250-y CrossRefGoogle Scholar
  89. Leichenko R (2011) Climate change and urban resilience. Curr Opin Environ Sustain 3:164–168. doi: 10.1016/j.cosust.2010.12.014
  90. Malcharek A (2010) Gezeiten und Wellen—Die Hydromechanik der Küstengewässer. Vieweg + Teubner, WiesbadenGoogle Scholar
  91. Marzocchi W, Garcia-Aristizabal A, Gasparini P, Mastellone ML, Di Ruocco A (2012) Basic principles of multi-risk assessment: a case study in Italy. Nat Hazards 62(2):551–573. doi: 10.1007/s11069-012-0092-x CrossRefGoogle Scholar
  92. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994–997. doi: 10.1126/science.1098704 CrossRefGoogle Scholar
  93. Merz R, Blöschl G (2003) A process typology of regional floods. Water Resourc Res 39(12)1340:SWC1-SWC20. doi: 10.1029/2002WR001952
  94. Merz B, Emmermann R (2006) Zum Umgang mit Naturgefahren in Deutschland: Vom Reagieren zum Risikomanagement. GAIA Ecol Perspect Sci Soc 15(4):265–274Google Scholar
  95. Merz B, Thieken AH (2009) Flood risk curves and uncertainty bounds. Nat Hazards 51:437–458. doi: 10.1007/s11069-009-9452-6 CrossRefGoogle Scholar
  96. Merz B, Kreibich H, Apel H (2008) Flood risk analysis: uncertainties and validation. Oesterreichische Wasser und Abfallwirtschaft 5–6:89–94. doi: 10.1007/s00506-008-0001-4 CrossRefGoogle Scholar
  97. Merz B, Kreibich H, Schwarze R, Thieken A (2010) Review article ‘assessment of economic flood damage’. Nat Hazards Earth Syst Sci 10(8):1697–1724. doi: 10.5194/nhess-10-1697-2010 CrossRefGoogle Scholar
  98. Merz B, Kundzewicz ZW, Delgado J, Hundecha Y, Kreibich H (2012) Detection and attribution of changes in flood hazard and risk. In: Kundzewicz ZW (ed) Changes in flood risk in Europe. IAHS Special Publication 10, IAHS Press, WallingfordGoogle Scholar
  99. Merz B, Elmer F, Kunz M, Mühr B, Schröter K, Uhlemann-Elmer S (2014) The extreme flood in June 2013 in Germany. La Houille Blanche 1:5–10. doi: 10.1051/lhb/2014001 CrossRefGoogle Scholar
  100. Mudersbach C, Jensen J (2010) Küstenschutz an der Deutschen Ostseeküste. Zur Ermittlung von Eintrittswahrscheinlichkeiten extremer Sturmflutwasserstände. Korrespondenz Wasserwirtschaft 3(3):136–144. doi: 10.3243/kwe2010.03.003
  101. Munich Re (1993) Winterstürme in Europa. Publication of Munich Re. Ordering Number 2041-E-dGoogle Scholar
  102. Munich Re (1999) Naturkatastrophen in Deutschland. Publication of Munich Re. Ordering Number 2798-E-dGoogle Scholar
  103. Munich Re (2012) NatCatSERVICE, Stand Juli. Münchener Rückversicherungs-Gesellschaft, GeoRisikoForschung. http://www.ergo.com/de/Presse/Overview/Pressemappen/Wetterereignisse/~/media/ERGOcom/PDF/Praesentationen/2012/201207-Naturkatastrophen-Deutschland-1970-2011.ashx. Accessed 15 Nov 2012
  104. Nadal N, Zapata R, Pagán I, López R, Agudelo J (2010) Building damage due to Riverine and coastal floods. J Water Resourc Plan Manage 136(3):327–336. doi: 10.1061/(ASCE)WR.1943-5452.0000036 CrossRefGoogle Scholar
  105. Parolai S, Grünthal G, Wahlström R (2007) Site-specific response spectra from the combination of microzonation with probabilistic seismic hazard assessment—an example for the Cologne (Germany) area. Soil Dyn Earthq Eng 27(1):49–59. doi: 10.1016/j.soildyn.2006.03.007 CrossRefGoogle Scholar
  106. Penning-Rowsell EC, Green C (2000) New Insights into the appraisal of flood-alleviation benefits: (1) Flood damage and flood loss information. J. Chart Inst Water E 14:347–353. doi: 10.1111/j.1747-6593.2000.tb00272.x CrossRefGoogle Scholar
  107. Penning-Rowsell E, Johnson C, Tunstall S, Tapsell S, Morris J, Chatterton J, Green C (2005) The benefits of flood and coastal risk management: a manual of assessment techniques. Middlesex University Press, UKGoogle Scholar
  108. Petersen M, Rohde H (1991) Sturmflut—Die großen Fluten an den Küsten Schleswig-Holsteins und in der Elbe. Wachholtz, NeumünsterGoogle Scholar
  109. Petrow T, Merz B (2009) Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002. J Hydrol 371(1–4):129–141. doi: 10.1016/j.jhydrol.2009.03.024 CrossRefGoogle Scholar
  110. Petrow T, Zimmer J, Merz B (2009) Changes in the flood hazard in Germany through changing frequency and persistence of circulation patterns. Nat Hazards Earth Syst Sci 9(4):1409–1423. doi: 10.5194/nhess-9-1409-2009 CrossRefGoogle Scholar
  111. Pinto JG (2012) personal communicationGoogle Scholar
  112. Pinto JG, Fröhlich EL, Leckebusch GC, Ulbrich U (2007) Changing European storm loss potentials under modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM. Nat Hazards Earth Syst Sci 7:165–175. doi: 10.5194/nhess-7-165-2007 CrossRefGoogle Scholar
  113. PLANAT (2004) (National Platform for Natural Hazards) (2004) The cycle of integrated risk management. http://www.planat.ch Risk management. Accessed 28 Oct 2004
  114. Ploeger SK, Atkinson GM, Samson C (2010) Applying the HAZUS-MH software tool to assess seismic risk in downtown Ottawa, Canada. Nat Hazards 53(1):1–20. doi: 10.1007/s11069-009-9408-x CrossRefGoogle Scholar
  115. Prudhomme C, Parry S, Genevier M, Hannaford J, Kundzewicz ZW (2012) Large scale flooding in Europe 1961–2005. Changes in flood risk in Europe, vol 10. IAHS, Balkema, pp 55–82Google Scholar
  116. Punge HJ, Bedka KM, Kunz M, Werner A (2014) A new physically based stochastic event catalogue for hail in Europe. Hazards Online, Nat. doi: 10.1007/s11069-014-1161-0 Google Scholar
  117. Puskeiler M (2013) Radarbasierte analyse der Hagelgefährdung in Deutschland. Wiss. Reports Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology 59. KIT Scientific Publishing, Karlsruhe, GermanyGoogle Scholar
  118. Ramirez J, Adamowicz WL, Easter KW, Graham-Tomasi T (1988) Ex post analysis of flood control: benefit-cost analysis and the value of information. Water Resour Res 24:1397–1405. doi: 10.1029/WR024i008p01397 CrossRefGoogle Scholar
  119. Remo JWF, Pinter N (2012) Hazus-MH earthquake modeling in the central USA. Nat Hazards 63(2):1055–1081. doi: 10.1007/s11069-012-0206-5 CrossRefGoogle Scholar
  120. Safecoast (2008) Coastal flood risk and trends for the future in the North Sea region: synthesis report. The Safecoast project team, The HagueGoogle Scholar
  121. Schmidt J, Matcham I, Reese S, King A, Bell R, Henderson R, Smart G, Cousins J, Smith W, Heron D (2011) Quantitative multi-risk analysis for natural hazards: a framework for multi-risk modelling. Nat Hazards 58(3):1169–1192. doi: 10.1007/s11069-011-9721-z CrossRefGoogle Scholar
  122. Schmidt-Thomé P, Greiving S, Kallioa H, Fleischhauer M, Jarva J (2006) Economic risk maps of floods and earthquakes for European regions. Quatern Int 150:103–112. doi: 10.1016/j.quaint.2006.01.024 CrossRefGoogle Scholar
  123. Schuster SS, Blong RJ, McAneney KJ (2006) Relationship between radar-derived hail kinetic energy and damage to insured buildings for severe hailstorms in Eastern Australia. Atmos Res 81:215–235. doi: 10.1016/j.atmosres.2005.12.003 CrossRefGoogle Scholar
  124. Schwarze R, Wagner G (2007) The political economy of natural disaster insurance: lessons from the failure of a proposed compulsory insurance scheme in Germany. Eur Environ 17:403–415. doi: 10.1002/eet.456 CrossRefGoogle Scholar
  125. Silver ML (2001) International best practices in disaster mitigation and management recommended for Mongolia. In: Paper presented at the national conference strengthening the disaster mitigation and management system in Mongolia, Gov. of Mongolia, UlaanbaatarGoogle Scholar
  126. Sirocko F, Dietrich S, Veres D, Grootes PM, Schaber-Mohr K, Seelos K, Nadeau MJ, Kromer B, Rothacker L, Rohner M, Krbetschek M, Appleby P, Hambach U, Rolf C, Sudo M, Grim S (2013) Multi-proxy dating of Holocene maar lakes and Pleistocene dry maar sediments in the Eifel, Germany. Quatern Sci Rev 62:56–76. doi: 10.1016/j.quascirev.2012.09.011 CrossRefGoogle Scholar
  127. Smith DI (1994) Flood damage estimation—a review of urban stage damage curves and loss functions. Water SA 20(3):231–238Google Scholar
  128. Tapia-Silva FO, Itzerott S, Förster S, Kuhlmann B, Kreibich H (2011) Estimation of flood losses to agricultural crops using remote sensing. Phys Chem Earth Parts A/B/C 36(7–8):253–265. doi: 10.1016/j.pce.2011.03.005 CrossRefGoogle Scholar
  129. te Linde AH, Bubeck P, Dekkers JEC, de Moel H, Aerts JCJH (2011) Future flood risk estimates along the river Rhine. Nat Hazard Earth Syst Sci 11(2):459–473. doi: 10.5194/nhess-11-459-2011 CrossRefGoogle Scholar
  130. Thieken A, Müller M, Kreibich H, Merz B (2005) Flood damage and influencing factors: new insights from the August 2002 flood in Germany. Water Resour Res 41:W12430. doi: 10.1029/2005WR004177 CrossRefGoogle Scholar
  131. Thieken AH, Petrow Th, Kreibich H, Merz B (2006) Insurability and mitigation of flood losses in private households in Germany. Risk Anal 26(2):383–395. doi: 10.1111/j.1539-6924.2006.00741.x CrossRefGoogle Scholar
  132. Tyagunov S, Grünthal G, Wahlström R, Stempniewski L, Zschau J (2006) Seismic risk mapping for Germany. Special Issue: methods for risk assessment and mapping in Germany. Nat Hazard Earth Syst Sci 6:573–586CrossRefGoogle Scholar
  133. Uhlemann S, Thieken AH, Merz B (2010) A consistent set of trans-basin floods in Germany between 1952–2002. Hydrol Earth Syst Sci 14(7):1277–1295. doi: 10.5194/hess-14-1277-2010 CrossRefGoogle Scholar
  134. Vanneste K, Verbeeck K, Camelbeeck T, Paulissen E, Meghraoui M, Renardy F, Jongmans D, Frechen M (2001) Surface-rupturing history of the Bree fault scarp, Roer Valley graben: evidence for six events since the late Pleistocene. J Seismol 5:329–359. doi: 10.1023/A:1011419408419 CrossRefGoogle Scholar
  135. Vanneuville W, Maddens R, Collard C, Bogaert P, de Maeyer P, Antrop M (2006) Impact op mens en economie t.G.V. Overstromingen bekeken in het licht van wijzigende hydraulische condities, omgevingsfactoren en klimatologische omstandigheden, Vakgroep Geografie, Universiteit Gent, Gent, Belgium, pp 3–121Google Scholar
  136. Vitolo R, Stephenson DB, Cook IM, Mitchell-Wallace K (2009) Serial clustering of intense European storms. Met Z 18:411–424. doi: 10.1127/0941-2948/2009/0393 CrossRefGoogle Scholar
  137. von Storch H, Woth K (2008) Storm surges: perspectives and options. Sustain Sci 3:33–43. doi: 10.1007/s11625-008-0044-2 CrossRefGoogle Scholar
  138. Vorogushyn S, Lindenschmidt KE, Kreibich H, Apel H, Merz B (2012) Analysis of a detention basin impact on dike failure probabilities and flood risk for a channel-dike-floodplain system along the river Elbe, Germany. J Hydrol 436–437:120–131. doi: 10.1016/j.jhydrol.2012.03.006 CrossRefGoogle Scholar
  139. Wasserhaushaltsgesetz (2009). Gesetz zur Ordnung des WasserhaushaltsGoogle Scholar
  140. Watkiss P, Downing T, Handley C, Butterfield R (2005) The impacts and costs of climate change. Final report commissioned by European Commission DG Environment, http://ec.europa.eu/clima/policies/package/docs/final_report2_en.pdf. Accessed 24 May 2013
  141. Wieringa J (1986) Roughness-dependent geographical interpolation of surface wind speed averages. Q J R Meteorol Soc 112:867–889. doi: 10.1002/qj.49711247316 CrossRefGoogle Scholar
  142. Wilhelmi OV, Hayden MH (2010) Connecting people and place: a new framework for reducing urban vulnerability to extreme heat. Environ Res Lett 5(014021):1–7. doi: 10.1088/1748-9326/5/1/014021 Google Scholar
  143. Wind HG, Nierop TM, de Blois CJ, de Kok JL (1999) Analysis of flood damages from the 1993 and 1995 Meuse floods. Water Resour Res 35(11):3459–3465. doi: 10.1029/1999WR900192 CrossRefGoogle Scholar
  144. WMO (1999) Comprehensive risk assessment for natural hazards. Technical document 955. World Meteorological Organisation, http://www.planat.ch/fileadmin/PLANAT/planat_pdf/alle_2012/2006-2010/Melching__Pilon_2006_-_Comprehensive_Risk_Assessment_for_Natural.pdf. Accessed 15 March 2014
  145. Woth K, Weisse R, von Storch H (2006) Climate change and North Sea storm surge extremes: an ensemble study of storm surge extremes expected in a changed climate projected by four different regional climate models. Ocean Dyn 56(1):3–15. doi: 10.1007/s10236-005-0024-3 CrossRefGoogle Scholar
  146. Yeo SW (2002) Flooding in Australia: a review of events in 1998. Nat Hazards 25:177–191. doi: 10.1023/A:1013765303567 CrossRefGoogle Scholar
  147. Zimmerli P (2005) Hagelstürme in Europa. Swiss Re, ZürichGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Heidi Kreibich
    • 1
  • Philip Bubeck
    • 1
    • 2
  • Michael Kunz
    • 3
  • Holger Mahlke
    • 3
  • Stefano Parolai
    • 4
  • Bijan Khazai
    • 5
  • James Daniell
    • 5
  • Tobia Lakes
    • 6
  • Kai Schröter
    • 1
  1. 1.Section HydrologyGerman Research Centre for Geosciences (GFZ)PotsdamGermany
  2. 2.adelphiBerlinGermany
  3. 3.Institute for Meteorology and Climate Research (IMK-TRO)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  4. 4.Centre for Early WarningGerman Research Centre for Geosciences (GFZ)PotsdamGermany
  5. 5.Geophysikalisches InstitutKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  6. 6.Geoinformation Science Lab, Geography DepartmentHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations