Natural Hazards

, Volume 74, Issue 2, pp 1095–1125 | Cite as

Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts

  • Patrick L. Barnard
  • Maarten van Ormondt
  • Li H. Erikson
  • Jodi Eshleman
  • Cheryl Hapke
  • Peter Ruggiero
  • Peter N. Adams
  • Amy C. Foxgrover
Original Paper

Abstract

The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.

Keywords

Modeling Storms Inundation Erosion Cliff Beach Hazards 

References

  1. Adams PN, Inman D, Graham N (2008) Southern California deep-water wave climate: characterization and application to coastal processes. J Coast Res 24(4):1022–1035CrossRefGoogle Scholar
  2. Adams PN, Inman DL, Lovering JL (2011) Effects of climate change and wave direction on longshore sediment transport patterns in Southern California. Clim Change 109(S1):211–228. doi:10.1007/s10584-011-0317-0 CrossRefGoogle Scholar
  3. Allan JC, Komar PD (2006) Climate controls on US West Coast erosion processes. J Coast Res 22(3):511–529CrossRefGoogle Scholar
  4. Allan JC, Komar PD, Ruggiero P (2011) Storm surge magnitude and frequency on the central Oregon coast. Proceedings of the solutions to coastal disasters conference 2011, 13 pGoogle Scholar
  5. Barnard PL, Hoover D (2010) A seamless, high-resolution, coastal digital elevation model (DEM) for Southern California. U.S. Geological Survey Data Series 487: 8 p. http://pubs.usgs.gov/ds/487/
  6. Barnard PL, O’Reilly B, van Ormondt M, Elias E, Ruggiero P, Erikson LH, Hapke C, Collins BD, Guza RT, Adams PN, Thomas JT (2009) The framework of a coastal hazards model: a tool for predicting the impact of severe storms. U.S. Geological Survey Open-File Report 2009–1073:19 p. http://pubs.usgs.gov/of/2009/1073/
  7. Barnard PL, Allan J, Hansen JE, Kaminsky GM, Ruggiero P, Doria A (2011) The impact of the 2009-10 El Niño Modoki on U.S. West Coast beaches. Geophys Res Lett 38 (L13604):7Google Scholar
  8. Bender MA, Ginis I (2000) Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: effects on hurricane intensity. Mon Weather Rev 128:917–946CrossRefGoogle Scholar
  9. Bender MA, Ginis I, Tuleya R, Thomas B, Marchok T (2007) The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon Weather Rev 135:3965–3989CrossRefGoogle Scholar
  10. Bromirski PD, Flick RE, Cayan DR (2003) Storminess variability along the California coast: 1858–2000. J Clim 16(6):982–993CrossRefGoogle Scholar
  11. Cayan DR, Bromirski PD, Hayhoe K, Tyree M, Dettinger MD, Flick RE (2008) Climate change projections of sea level extremes along the California coast. Clim Change 87(Suppl. 1):S57–S73CrossRefGoogle Scholar
  12. Chen SS, Price JF, Zhao W, Donelan MA, Walsh EJ (2007) The CBLAST Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull Am Meteorolog Soc 88:311–317CrossRefGoogle Scholar
  13. Coastal Data Information Program (CDIP) (2013) Scripps Institution of Oceanography, Integrative Oceanography Division, San Diego, http://cdip.ucsd.edu
  14. Coastal Engineering Research Center (CERC) (1984) Shore Protection Manual. U.S. Army Corps of Engineers, Coastal Engineering Research Center. U.S. Government Printing Office, WashingtonGoogle Scholar
  15. Coupled Model Intercomparison Project, Phase 5 (CMIP5) (2011) WCRP Coupled Model Intercomparison Project—Phase 5. Special Issue of the CLIVAR Exchanges Newslett 56 15(2): 52Google Scholar
  16. Delft Hydraulics (2007) User manual Delft3D-FLOW. WL/Delft Hydraulics, Delft, p 614Google Scholar
  17. Dettinger MD, Ralph FM, Hughes M, Das T, Neiman P, Cox D, Estes G, Reynolds D, Hartman R, Cayan D, Jones L (2012) Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California. Nat Hazards 60:1085–1111. doi:10.1007/s11069-011-9894-5 CrossRefGoogle Scholar
  18. Egbert G, Bennett A, Foreman M (1994) TOPEX/Poseidon tides estimated using a global inverse model. J Geophys Res 99(C12):24821–24852CrossRefGoogle Scholar
  19. Elias EPL, Hansen JE (2013) Understanding processes controlling sediment transports at the mouth of a high-energetic inlet system (San Francisco Bay, CA). Mar Geol 345:207–220. doi:10.1016/j.margeo.2012.07.003 CrossRefGoogle Scholar
  20. Federal Emergency Management Agency (FEMA) (2007) Coastal Hazards Analysis Modeling Program Version 2.0, User Manual: 50 pGoogle Scholar
  21. Foxgrover AC, Barnard PL (2012) A seamless, high-resolution digital elevation model (DEM) of the North-Central California coast. U.S. Geological Survey Data Series 684:11. http://pubs.usgs.gov/ds/684/
  22. Gallien TW, Schubert JE, Sanders BF (2011) Predicting tidal flooding of urbanized embayments: a modeling framework and data requirements. Coast Eng 58:567–577CrossRefGoogle Scholar
  23. Gallien TW, Barnard PL, van Ormondt M, Foxgrover AC, Sanders BF (2012) A parcel-scale coastal flood forecasting prototype for a Southern California urbanized embayment. J Coast Res 29(3):642–656. doi:10.2112/JCOASTRES-D-12-00114.1 Google Scholar
  24. Gemmrich J, Thomas B, Bouchard R (2011) Observational changes and trends in northeast Pacific wave records. Geophys Res Lett 38(L22601):5. doi:10.1029/2011GL049518 Google Scholar
  25. Guza RT, Thornton EB (1981) Wave set-up on a natural beach. J Geophys Res 86(C5):4133–4137CrossRefGoogle Scholar
  26. Hansen JE (2007) Scientific reticence and sea level rise. Environ Res Lett 2(024002):7. doi:10.1088/1748-9326/2/2/024002 Google Scholar
  27. Hapke C, Plant N (2010) Predicting coastal cliff erosion using a Bayesian probabilistic model. Mar Geol 278:140–149. doi:10.1016/j.margeo.2010.10.001 CrossRefGoogle Scholar
  28. Hapke CJ, Reid D (2007) The National assessment of shoreline change: Part 4, historical coastal cliff retreat along the California coast. U.S. Geological Survey Open-file Report 2007–1133. http://pubs.usgs.gov/of/2007/1133/
  29. Hemer MA, Fan Y, Mori N, Semedo A, Wang XL (2013) Projected changes in wave climate from a multi-model ensemble. Nat Clim Change 3:471–476. doi:10.1038/nclimate1791 CrossRefGoogle Scholar
  30. Hinkel J, Nicholls RJ, Tol RSJ, Wang ZB, Hamilton JM, Boot G, Vafeidis AT, McFadden L, Ganopolski A, Klein RJT (2013) A global analysis of erosion of sandy beaches and sea-level rise: an application of DIVA. Glob Planet Change 111:150–158CrossRefGoogle Scholar
  31. Komar PD, Inman DL (1970) Longshore sand transport on beaches. J Geophys Res 75(30):5914–5927CrossRefGoogle Scholar
  32. Lesser GR, Roelvink JA, van Kester JA, Stelling GS (2004) Development and validation of a three-dimensional morphological model. Coast Eng 51:883–915CrossRefGoogle Scholar
  33. McCall RT, Thiel Van, de Vries JSM, Plant NG, Van Dongeren AR, Roelvink JA, Thompson DM, Reniers AJHM (2010) Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island. Coast Eng 57:668–683. doi:10.1016/j.coastaleng.2010.02.006 CrossRefGoogle Scholar
  34. Menendez M, Mendez FJ, Losada IJ, Graham NE (2008) Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophys Res Lett 35(L22607):6. doi:10.1029/2008GL035394 Google Scholar
  35. Minor SA, Kellogg KS, Stanley RG, Stone P, Powell II CL, Gurrola LD, Selting AJ, Brandt TR (2002) Preliminary geologic map of the Santa Barbara Coastal Plain Area, Santa Barbara County, California. U.S. Geological Survey Open-file Report 02–136. http://pubs.usgs.gov/of/2002/ofr-02-0136/
  36. National Oceanic and Atmospheric Administration (NOAA) (2011) WaveWatch III Model. Center of Operational Products and Services. http://polar.ncep.noaa.gov/waves/wavewatch/wavewatch.html. Accessed 15 Aug 2011
  37. National Oceanic and Atmospheric Administration (NOAA) (2013a) National Data Buoy Center. http://www.ndbc.noaa.gov/. Accessed 10 Dec 2013
  38. National Oceanic and Atmospheric Administration (NOAA) (2013b) Sea level rise and coastal flooding impacts viewer. Coastal Services Center. http://www.csc.noaa.gov/slr/viewer/#. Accessed 10 Dec 2013
  39. National Oceanic and Atmospheric Administration (NOAA) (2013c) Tides & Currents. Center for Operational Products and Services. http://tidesandcurrents.noaa.gov/. Accessed 10 Dec 2013
  40. National Research Council (2012) Sea-level rise for the coasts of California, Oregon, and Washington: past, present, and future. Committee on Sea Level Rise in California, Oregon, and Washington. The National Academies Press, Washington, 260 pGoogle Scholar
  41. National Weather Service (NWS) (2012) California’s Top 15 weather events of 1900’s. National Oceanic and Atmospheric Administration. http://www.wrh.noaa.gov/pqr/paststorms/california10.php#1982-83%20El%20Nino%20Storms. Accessed 9 November 2012
  42. National Weather Service (NWS) (2013) Climate prediction. National Oceanic and Atmospheric Administration. http://www.nws.noaa.gov/predictions.php Accessed 10 December 2013
  43. Nicholls RJ (2004) Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Glob Environ Change 14:69–86. doi:10.1016/j.gloenvcha.2003.10.007 CrossRefGoogle Scholar
  44. O’Reilly W (1993) The southern California wave climate–effects of islands and bathymetry. Shore Beach 61(3):14–19Google Scholar
  45. O’Reilly WC, Guza RT (1993) A comparison of spectral wave models in the Southern California Bight. Coast Eng 19(3):263–282CrossRefGoogle Scholar
  46. O’Reilly WC, Seymour RJ, Guza RT, Castel D (1993) Wave monitoring in the Southern California Bight. Ocean Wave Measurement and Analysis. Proceedings of 2nd International Symposium, pp 849–863Google Scholar
  47. Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 331:1340–1343CrossRefGoogle Scholar
  48. Rahmstorf S (2007) A semi-empirical approach to projecting future sea level rise. Science 315:368–370. doi:10.1126/science.1135456 CrossRefGoogle Scholar
  49. Roelvink D, Reniers A, Van Dongeren A, van Thiel de Vries J, Lescinski J, McCall R (2008) Modeling hurricane impacts on beaches, dunes, and barrier islands. In Smith JM (ed) Coastal Engineering 2008, Proceedings of the 31st International Conference vol 5, 14 pGoogle Scholar
  50. Roelvink D, Reniers A, Van Dongeren A, van Thiel de Vries J, McCall R, Lescinski J (2009) Modelling storm impacts on beaches, dunes and barrier islands. Coast Eng 56(11–12):1133–1152CrossRefGoogle Scholar
  51. Ruggiero P (2008) Impacts of climate change on coastal erosion and flood probability in the US Pacific Northwest. Proceedings of Solutions to Coastal Disasters 2008: 12 pGoogle Scholar
  52. Ruggiero P (2013) Is the intensifying wave climate of the U.S. Pacific Northwest increasing flooding and erosion risk faster than sea-level rise? J Port Waterw Eng 139(2):88–97CrossRefGoogle Scholar
  53. Ruggiero P, Komar PD, Allan JC (2010) Increasing wave heights and extreme-value projections: the wave climate of the U.S., Pacific Northwest. Coast Eng 57:539–552. doi:10.1016/j.coastaleng.2009.12.005 CrossRefGoogle Scholar
  54. Santoso A, McGregor S, Jin F, Cai W, England MH, An S, McPhaden MJ, Guilyardi E (2013) Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504:126–130. doi:10.1038/nature12683 CrossRefGoogle Scholar
  55. Scripps Institution of Oceanography (SIO) (2009) Southern California beach processes study survey archive. http://cdip.ucsd.edu/SCBPS/?nav=data. Accessed 12 Oct 2009
  56. Shepard FP (1950) Beach cycles in Southern California. Memo 20, Beach Erosion Board, U.S. Army Corps of Engineers, Washington, 26 pGoogle Scholar
  57. Splinter KD, Palmsten ML (2012) Modeling dune response to an East Coast Low. Mar Geol 329–331:46–57CrossRefGoogle Scholar
  58. Stockdon H, Holman R, Howd P, Sallenger AH (2006) Empirical parameterization of setup, swash, and runup. Coast Eng 53:573–588CrossRefGoogle Scholar
  59. Tolman HL (1997) User manual and system documentation of WAVEWATCH-III version 1.15. NOAA/NWS/NCEP/OMB Technical Note 151:97 ppGoogle Scholar
  60. Tolman HL (2009) User manual and system documentation of WAVEWATCH III version 3.14. NOAA/NWS/NCEP/MMAB Technical Note 276:194 pGoogle Scholar
  61. Van Dongeren A, Bolle A, Vousdoukas I, Plomaritis T, Eftimova P, Williams J, Armaroli C, Idier D, Van Geer P, Van Thiel de Vries J, Haerens P, Taborda R, Benavente J, Trifonaova E, Ciavola P, Balouin Y, Roelvink D (2009) MICORE: Dune erosion and overwash model validation with data from nine European field sites. Proceedings of Coastal Dynamics 2009, Paper No. 82Google Scholar
  62. Verboom GK, Slob A (1984) Weakly-reflective boundary conditions for two-dimensional water flow problems. Adv Water Resour 7(4):192–197CrossRefGoogle Scholar
  63. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106(51):21527–21532CrossRefGoogle Scholar
  64. Warner JC, Armstrong B, He R, Zambon JB (2010) Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. Ocean Model 35(3):230–244CrossRefGoogle Scholar
  65. Yates ML, Guza RT, O’Reilly WC, Seymour RJ (2008) Seasonal persistence of a small Southern California beach fill. Coast Eng 56:559–564. doi:10.1016/j.coastaleng.2008.11.004i CrossRefGoogle Scholar
  66. Young IR, Zieger S, Babanin AV (2011) Global trends in wind speed and wave height. Science 332:451–455CrossRefGoogle Scholar

Copyright information

© Us Government 2014

Authors and Affiliations

  • Patrick L. Barnard
    • 1
  • Maarten van Ormondt
    • 2
  • Li H. Erikson
    • 1
  • Jodi Eshleman
    • 3
  • Cheryl Hapke
    • 4
  • Peter Ruggiero
    • 5
  • Peter N. Adams
    • 6
  • Amy C. Foxgrover
    • 1
  1. 1.Pacific Coastal and Marine Science CenterUnited States Geological SurveySanta CruzUSA
  2. 2.Deltares-Delft HydraulicsDelftThe Netherlands
  3. 3.Geologic Resources Division, Natural Resource Program CenterNational Park ServiceLakewoodUSA
  4. 4.Coastal and Marine Geology ProgramUnited States Geological SurveySt. PetersburgUSA
  5. 5.Department of GeosciencesOregon State UniversityCorvallisUSA
  6. 6.Department of Geological SciencesUniversity of FloridaGainesvilleUSA

Personalised recommendations