Natural Hazards

, Volume 73, Issue 3, pp 1771–1815 | Cite as

Assessing physical vulnerability in large cities exposed to flash floods and debris flows: the case of Arequipa (Peru)

  • Jean-Claude ThouretEmail author
  • Susanne Ettinger
  • Mathieu Guitton
  • Olivier Santoni
  • Christina Magill
  • Kim Martelli
  • Giulio Zuccaro
  • Victor Revilla
  • Juan Antonio Charca
  • Anita Arguedas
Original Paper


Understanding the physical vulnerability of buildings and infrastructure to natural hazards is an essential step in risk assessment for large cities. We have interpreted high spatial resolution images, conducted field surveys, and utilized numerical simulations, in order to assess vulnerability across Arequipa, south Peru, close to the active El Misti volcano. The emphasis of this study was on flash floods and volcanic or non-volcanic hyperconcentrated flows, which recur on average every 3.5 years across the city. We utilized a geographic information system to embed vulnerability and hazard maps as a step to calculate risk for buildings and bridges along the Río Chili valley and two tributaries. A survey of ~1,000 buildings from 46 city blocks, different in age, construction materials, and land usage, provided architectural and structural characteristics. A similar survey of twenty bridges across the three valleys was based on structural, hydraulic, and strategic parameters. Interpretation of high spatial resolution (HSR) satellite images, which allows for quick identification of approximately 69 % of the structural building types, effectively supplemented field data collection. Mapping vulnerability has led us to pinpoint strategic areas in case of future destructive floods or flows. Calculated vulnerability is high if we examine structural criteria alone. We further consider physical setting with the most vulnerable city blocks located on the lowermost terraces, perpendicular or oblique to the flow path. Statistical analysis conducted on 3,015 city blocks, considering nine criteria identified from HSR images, indicated that building-type heterogeneity and the shape of the city blocks, along with building and street network density, are the most discriminant parameters for assessing vulnerability.


Hazard Vulnerability Risk Building Flood Lahar GIS Remote sensing Peru 



This article received the support from the French National Research Agency within the project “Laharisk”(ANR-09-RISK-005). We acknowledge the support of the Civil Protection INDECI office in Arequipa, as well as all Peruvian colleagues involved in risk management, especially J.A. Luque. This is Laboratory of Excellence CLERVOLC contribution no. 87.

Supplementary material

11069_2014_1172_MOESM1_ESM.jpg (160 kb)
Supplementary material 1 (JPG 160 kb)
11069_2014_1172_MOESM2_ESM.doc (36 kb)
Supplementary material 2 (DOC 36 kb)
11069_2014_1172_MOESM3_ESM.pdf (790 kb)
Supplementary material 3 (PDF 789 kb)
11069_2014_1172_MOESM4_ESM.jpg (734 kb)
Supplementary material 4 (JPG 733 kb)
11069_2014_1172_MOESM5_ESM.jpg (660 kb)
Supplementary material 5 (JPG 660 kb)
11069_2014_1172_MOESM6_ESM.jpg (710 kb)
Supplementary material 6 (JPG 710 kb)
11069_2014_1172_MOESM7_ESM.jpg (78 kb)
Supplementary material 7 (JPG 78 kb)


  1. Aguilar BZ, Alva HJA (2001) Microzonificación sismica de la ciudad de Arequipa. Informe Centro Peruano Japonés de Investigación Sismológica y de Mitigación de Desastres (CISMID), 15 p., Universidad Nacional de Ingenieria, Lima, PeruGoogle Scholar
  2. Baxter PJ, Boyle R, Cole P, Neri A, Spence RJS, Zuccaro G (2005) The impacts of pyroclastic surges on buildings at the eruption of the Soufrière Hills volcano, Montserrat. Bull Volcanol 67:292–313CrossRefGoogle Scholar
  3. Birkmann J (2006) Measuring vulnerability to promote disaster resilient societies. Conceptual framework and definitions. In: Birkmann J (ed) Measuring vulnerability to natural hazards—towards disaster resilient societies. United Nations University Press, Tokyo, pp 9–54Google Scholar
  4. Blaikie P, Cannon T, Davis I, Wisner B (2004) At risk: natural hazards, people’s vulnerability, and disasters, 2nd edn. Routledge, London, p 284Google Scholar
  5. Blong R (2000) Volcanic hazards and risk management. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 1215–1227Google Scholar
  6. Blong R (2003) Building damage in Rabaul, Papua New Guinea. Bull Volcanol 65:43–54Google Scholar
  7. Cacya L, Meza P, Carlotto V, Mamani L (2013) Aluvión del 8 de Febrero del 2013 en la ciudad de Arequipa. Foro internacional Peligros geológicos, Arequipa, 14–16 Octubre 2013, GRM, OVI Ingemmet, Libro de Resúmenes, pp 195–203Google Scholar
  8. Chester D, Degg M, Duncan AM, Guest JE (2001) The increasing exposure of cities to the effects of volcanic eruptions: a global survey. Global Environ Change Part B Environ Hazards 2:89–103Google Scholar
  9. Cobeñas G, Thouret JC, Bonadonna C, Boivin P (2012) The c.2030 yr BP Plinian eruption of El Misti volcano, Peru: eruption dynamics and hazard implications. J Volcanol Geotherm Res 241–242:105–120CrossRefGoogle Scholar
  10. Dall’Osso F, Gonella M, Gabbianelli G, Withycombe G, Dominey-Howes D (2009) A revised (PTVA) model for assessing the vulnerability of buildings to tsunami damage. Nat Hazards Earth Syst Sci 9:1557–1565. doi: 10.5194/nhess-9-1557-2009 CrossRefGoogle Scholar
  11. Degg MR, Chester DK (2005) Seismic and volcanic hazards in Peru: changing attitudes to disaster mitigation. The Geogr J 171:125–145CrossRefGoogle Scholar
  12. Delaite G, Thouret JC, Sheridan MF, Stinton A, Labazuy P, Souriot T, van Westen C (2005) Assessment of volcanic hazards of El Misti and in the city of Arequipa, Peru, based on GIS and simulations, with emphasis on lahars. Zeit für Geom NF, suppl 140:209–231Google Scholar
  13. Faccioli E, Pessina V, Calvi GM, Borzi B (1999) A study on damage scenarios for residential buildings in Catania City. J Seismol 3:327–343CrossRefGoogle Scholar
  14. Faella C, Nigro E (2003a) Dynamic impact of the debris flows on the constructions during the hydrogeological disaster in Campania 1998: description and analysis of the damages. In: Picarelli L (ed) Proceedings of international conference on fast slope movements-prediction and prevention for risk mitigation (FSM2003), Napoli, Italy, 11–13 May 2003, Patron, BolognaGoogle Scholar
  15. Faella C, Nigro E (2003b) Dynamic impact of the debris flows on the constructions during the hydrogeological disaster in Campania 1998: failure mechanical models and evaluation of the impact velocity. In: Picarelli L (ed) Proceedings of international conference on fast slope movements-prediction and prevention for risk mitigation (FSM2003), Napoli, Italy, 11–13 May 2003, Patron, BolognaGoogle Scholar
  16. Faella C, Nigro E (2003c) A hypothesis of technical code on the structural design and repairing in urban areas with high debris flow risk. In: Picarelli L (ed) Proceedings of international conference on fast slope movements-prediction and prevention for risk mitigation (FSM2003), Napoli, Italy, 11–13 May 2003, Patron, BolognaGoogle Scholar
  17. Fuchs S, Keiler M, Zischg A, Bründl M (2005) The long-term development of avalanche risk in settlements considering the temporal variability of damage potential. Nat Hazards Earth Syst Sci 5(6):893–901CrossRefGoogle Scholar
  18. Grêt-Regamey A, Straub D (2006) Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS. Nat Hazards Earth Syst Sci 6:911–926. doi: 10.5194/nhess-6-911-2006 CrossRefGoogle Scholar
  19. Grupo RPP, Peru.
  20. Harpel C, da Silva S, Salas G (2011) The 2 ka eruption of Misti volcano, southern Peru—the most recent Plinian eruption of Arequipa’s iconic volcano. GSA Spec Paper 484:1–7. doi: 10.1130/2011.2484 Google Scholar
  21. Haugen ED, Kaynia AM (2008) Vulnerability of structures impacted by debris flow. In: Chen et al (eds) Landslides and engineered slopes. Taylor & Francis Group, London, pp 381–387CrossRefGoogle Scholar
  22. INEI-ORSTOM (1998) Perú en Mapas, Atlas en base al censo de población y vivienda—Proyecto Orellana, Pontificia Universidad Catolica del Ecuador/ORSTOM/Instituto National de Estadïsticas y Censos/Instituto Panamericano de Geografia e Historia, IRD, Lima (In Spanish), pp 140Google Scholar
  23. Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110:972–984CrossRefGoogle Scholar
  24. Jenkins S, Komorowski JC, Baxter PJ, Spence R, Picquout A, Lavigne F, Surono (2013) The Merapi 2010 eruption: an interdisciplinary impact assessment methodology for studying pyroclastic density current dynamics. J Volcanol Geotherm Res 261:316–329CrossRefGoogle Scholar
  25. Kappes MS, Papathoma-Köhle M, Keiler M (2012) Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl Geogr 32:577–590CrossRefGoogle Scholar
  26. Kelman I (2002) Physical flood vulnerability of residential properties in coastal, eastern England. PhD dissertation, University of Cambridge, UK.
  27. Kerle N, Oppenheimer C (2002) Satellite remote sensing as a tool in lahar disaster management. Disasters 26(2):140–160CrossRefGoogle Scholar
  28. Lang K, Bachmann H, Eeri M (2004) On the seismic vulnerability of existing buildings: a case-study of the city of Basel. Earthq Spectra 20(1):43–66CrossRefGoogle Scholar
  29. Leger P, Tremblay R (2009) Earthquake ground motions for seismic damage assessment and re-evaluation of existing buildings and critical facilities. Damage assessment and reconstruction after war or natural disaster. NATO science for peace and security series I, pp 193–219Google Scholar
  30. Leone F, Lavigne F, Paris R, Denain JC, Vinet F (2011) A spatial analysis of the December 26, 2004 tsunami-induced damages: lessons learned for a better risk assessment integrating buildings vulnerability. Applied Geogr 31:363–375CrossRefGoogle Scholar
  31. Liu X, Lei J (2003) A method for assessing regional debris flow risk: an application in Zhaotong of Yunnan province (SW China). Geomorphology 52:181–191CrossRefGoogle Scholar
  32. Magill C, Blong R (2005) Volcanic risk ranking for Auckland, New Zealand. I: Methodology and hazard investigation. Bull Volcanol 67:331–339CrossRefGoogle Scholar
  33. Magill C, Blong R, McAneney J (2006) VolcaNZ—a volcanic loss model for Auckland, New Zealand. J Volcanol Geotherm Res 149(3–4):329–345. doi: 10.1016/j.jvolgeores.2005.09.004
  34. Manville V, Major JJ, Fagents SA (2013) Modeling lahar behavior and hazards. In: Fagents SA, Gregg RKP, Lopes RMC (eds) Modeling volcanic processes. The physics and mathematics of volcanism. Cambridge University Press, Cambridge, pp 300–330CrossRefGoogle Scholar
  35. Mariño J, Rivera M, Cacya L, Thouret JC, Macedo O, Salas G, Siebe C, Tilling RI, Sheridan MF, Chavez JA, Zuniga S (2007) Mapa de los peligros volcánicos del Misti. Ingemmet, Proyecto Multinacional Andino, IRD, LMV, IUNAM, UNSA, Universidad Católica Santa Maria, INDECI, Gobierno regional y Municipalidad provincial Arequipa, PREDES, SENAMHI, LimaGoogle Scholar
  36. Martelli K (2011) The physical vulnerability of urban areas facing the threat of inundation from lahars and flash floods: application to the case study of Arequipa, Peru. (Unpublished) PhD dissertation, Université Blaise Pascal, Clermont-Ferrand, p 245Google Scholar
  37. Mück M, Taubenböck H, Post J, Wegscheider S, Strunz G, Sumaryono S, Ismail FA (2012) Assessing building vulnerability to earthquake and tsunami hazard using remotely sensed data. Nat Haz 18. doi: 10.1007/s11069-012-0481-1
  38. MunichRe (2013) TOPICS—GEO. Natural catastrophes 2012, Analyses, assessments, positions. 2012 issue, 66 pGoogle Scholar
  39. Municipalidad Provincial de Arequipa (2002) Plan director de Arequipa metropolitana 2002–2015, published online.
  40. Nadim F, Kjekstad O (2009) Assessment of global high-risk landslide disaster hotspots. In: Sassa K, Canuti P (eds) Disaster risk reduction. Springer, Berlin, pp 213–222CrossRefGoogle Scholar
  41. Nagata M (1999) Una introducción a las inundaciones en el area urbana de Arequipa. Informe sobre las Torrenteras en Arequipa, INDECI-IGP-ORSTOM, Lima, p 99Google Scholar
  42. Nicholas J, Proverbs DG, Holt GD (2001) An investigation into factors influencing the assessment of UK flood-damaged domestic properties. In: Proceedings of RICS COBRA conference, Glasgow Caledonian University, 3–5 September 2001, pp 660–669Google Scholar
  43. Nigro E, Faella C (2008) Effects of debris flow on buildings. In: Mazzolani F, Mistakidis E, Borg RP, Byfield M, De Matteis G, Dubina D, Indirli M, Mandara A, Muzeau JP, Wald F, Wang Y (eds) Urban habitat constructions under catastrophic events, COST Action C26, University of Malta, COST C26-WG4, datasheet no. 4.11, pp 420–429Google Scholar
  44. Pareschi MT, Cavarra L, Favalli M, Gianinni F, Meriggi A (2000) GIS and volcanic risk management. Nat Haz 21:361–379CrossRefGoogle Scholar
  45. Pierson TC, Costa JE (1987) A rheologic classification of subaerial sediment-water flows. In: Costa JE, Wieczorek GF (eds) Debris flows/avalanches; process, recognition, and mitigation. Rev Eng Geol (GSA, Boulder), pp 1–12Google Scholar
  46. Pomonis A, Spence RJS, Baxter PJ (1999) Risk assessment of residential buildings for an eruption of Furnas Volcano, São Miguel, the Azores. J Volcanol Geotherm Res 92:107–131CrossRefGoogle Scholar
  47. Reese S, Cousins WJ, Power WL, Palmer NG, Tejakusuma IG, Nugrahadi S (2007) Tsunami vulnerability of buildings and people in South Java—field observations after the July 2006 Java tsunami. Nat Haz Earth Syst Sci 7:573–589. doi: 10.5194/nhess-7-573-2007 CrossRefGoogle Scholar
  48. Remondo J, Bonachea J, Cendrero A (2008) Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology 94(3–4):496–507CrossRefGoogle Scholar
  49. Roos W (2003) Damage to buildings. TNO Bouw, Delft Cluster, no. DC1-233-9, The NetherlandsGoogle Scholar
  50. Sandri L, Thouret JC, Constantinescu R, Biass S, Tonini R (2013) Long-term multi-hazard assessment for El Misti volcano (Peru). Bull Volcanol. doi: 10.1007/s00445-013-0771-9
  51. Santoni O (2011) Etude de la vulnérabilité de la ville d’Arequipa, Pérou, vis à vis du volcan El Misti, au moyen d’un SIG. (Unpublished) Master 2 Pro Report, Mention TSAD Spécialité SIIG3T, 51 p (in French)Google Scholar
  52. Schilling SP (1998) LAHARZ: GIS programs for automated delineation of lahar-hazard zones. US Geol Survey, open-file report 98-638, p 84Google Scholar
  53. Schneiderbauer S, Ehrlich D (2004) Risk, hazard and people’s vulnerability to natural hazards: a review of definitions, concepts and data. In: Joint Research Centre, European Commission, EUR21410Google Scholar
  54. Soetanto R, Proverbs DG (2004) Impact of flood characteristics on damage caused to UK domestic properties: the perceptions of building surveyors. Struct Survey 22:95–104CrossRefGoogle Scholar
  55. Spence RJS, Baxter PJ, Zuccaro G (2004a) Building vulnerability and human casualty estimation for a pyroclastic flow: a model and its application to Vesuvius. J Volcanol Geotherm Res 133:321–343CrossRefGoogle Scholar
  56. Spence R, Zuccaro G, Petrazzuoli S, Baxter PJ (2004b) The resistance of buildings to pyroclastic flows: theoretical and experimental studies in relation to Vesuvius. ASCE Nat Haz Rev 5:48–50CrossRefGoogle Scholar
  57. Spence R, Kelman I, Calogero E, Toyos G, Baxter P, Komorowski JC (2005) Modelling expected physical impacts and human casualties from explosive volcanic eruptions. Nat Haz Earth Syst Sci 5:1003–1015CrossRefGoogle Scholar
  58. Stinton A, Delaite G, Burkett B, Sheridan M, Thouret JC, Patra A (2004a) Titan2D simulated debris flow hazards: Arequipa, Peru. Abstracts, International Symposium on Environmental Software Systems (ISESS), USAGoogle Scholar
  59. Tavera H, Bufron E, Bernal I, Antayhua Y, Vilcapoma L (2002) The Arequipa (Peru) earthquake of June 23, 2001. J Seismol 6(2):279–283CrossRefGoogle Scholar
  60. Thouret JC, Suni J, Eissen JP, Navarro P (1999) Assessment of volcanic hazards in the Arequipa area bases on the eruptive history of Misti volcano, southern Peru. Zeit für Geom 114:89–112Google Scholar
  61. Thouret JC, Finizola A, Fornari M, Legeley-Padovani A, Suni J, Frechen M (2001) Geology of El Misti volcano near the city of Arequipa, Peru. Geol Soc Am Bull 113:1593–1610CrossRefGoogle Scholar
  62. Thouret JC, Enjolras G, Martelli K, Santoni O, Luque JA, Nagata M, Arguedas A, Macedo L (2013) Combining criteria for delineating lahar- and flash-flood-prone hazard and risk zones for the city of Arequipa, Peru. Nat Haz Earth Syst Sci 13:339–360CrossRefGoogle Scholar
  63. Tilling RI (2005) Volcano Hazards. In: Martí J, Ernst GJE (eds) Volcanoes and the environment. Cambridge University Press, Cambridge, pp 55–89CrossRefGoogle Scholar
  64. Valdivia M (2001) Risk management and urban planning, Arequipa, Peru. MSc Thesis, Internat Inst Aerospace Survey and Earth Sciences (ITC), Enschede, The Netherlands, p 110Google Scholar
  65. Van Westen CJ, Montoya L, Boerboom L (2003) Multi-hazard risk assessment using GIS in urban areas: a case study for the city of Turrialba, Costa Rica. The regional workshop on best practices in disaster mitigation, pp 53–72Google Scholar
  66. Vargas Franco RD, Thouret JC, Delaite G, van Westen C, Sheridan MF, Siebe C, Mariño J, Souriot T, Stinton A (2010) Mapping and assessing volcanic and flood hazards and risks, with emphasis on lahars in Arequipa, Peru. In: Groppelli G, Viereck-Goette L (eds) Stratigraphy and geology of volcanic areas. Geol Soc Am Spec Paper 464: 265–280Google Scholar
  67. Zanchetta G, Sulpizio R, Pareschi MT, Leoni FM, Santacroce R (2004) Characteristics of May 5-6, 1998 volcaniclastic debris flows in the Sarno area (Campania, southern Italy): relationships to structural damage and hazard zonation. J Volcanol Geotherm Res 133:377–393CrossRefGoogle Scholar
  68. Zerger A, Smith DI (2003) Impediments to using GIS for real-time disaster decision support. Comput Environ Urban Syst 27:123–141CrossRefGoogle Scholar
  69. Zêzere JL, Garcia RAC, Oliveira SC, Reis E (2008) Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology 94(3–4):467–495CrossRefGoogle Scholar
  70. Zuccaro G, De Gregorio D (2013) Time and Space dependency in impact damage evaluation of a sub-Plinian eruption at Mount Vesuvius. Nat Haz. doi: 10.1007/s11069-013-0571-8 Google Scholar
  71. Zuccaro G, Ianniello D (2004) Interaction of pyroclastic flows with building structures in an urban settlement: a fluid-dynamic simulation impact model. J Volcanol Geotherm Res 133:345–352CrossRefGoogle Scholar
  72. Zuccaro G, Cacace F, Spence RJS, Baxter PJ (2008) Impact of explosive eruption scenarios at Vesuvius. J Volcanol Geotherm Res 178:416–453CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jean-Claude Thouret
    • 1
    • 2
    Email author
  • Susanne Ettinger
    • 1
    • 2
  • Mathieu Guitton
    • 3
  • Olivier Santoni
    • 3
    • 4
  • Christina Magill
    • 5
  • Kim Martelli
    • 1
    • 2
    • 9
  • Giulio Zuccaro
    • 6
  • Victor Revilla
    • 7
  • Juan Antonio Charca
    • 7
  • Anita Arguedas
    • 8
  1. 1.Laboratoire Magmas et Volcans, CNRS UMR6524, IRD-R163Clermont Université, Université Blaise PascalClermont-FerrandFrance
  2. 2.CLERVOLCClermont-FerrandFrance
  3. 3.CERAMAC, Maison des Sciences de l’HommeUniversité Blaise PascalClermont-FerrandFrance
  4. 4.CERDI Centre d’Etudes et de Recherches sur le Développement InternationalUniversité d’AuvergneClermont-FerrandFrance
  5. 5.Risk FrontiersMacquarie UniversitySydneyAustralia
  6. 6.Plinivs Study CentreUniversita Federico IINaplesItaly
  7. 7.IBG Inka Building GroupArequipaPeru
  8. 8.Defensa Civil, Región ArequipaArequipaPeru
  9. 9.Tigris Resources LtdJerseyChannel Islands

Personalised recommendations