Natural Hazards

, Volume 73, Issue 2, pp 237–258 | Cite as

The use of press data in the development of a database for rainfall-induced landslides in Tegucigalpa, Honduras, 1980–2005

Original Paper

Abstract

The capital city of Honduras, Tegucigalpa, suffers from the occurrence of destructive landslides on a yearly basis. During the rainy season, damages to infrastructure as well as injuries, casualties and homeless individuals resulting from landslides are reported in the press. This paper presents the development of a database for rainfall-induced landslides for the period 1980–2005, based on the news reported by two local newspapers. The editions comprehended during the study period have been scrutinized, and articles focusing on landslides, tropical storms, hurricanes, floods and vulnerability of the city have been collected. The interpretation of these archives has allowed the compilation of valuable data of approximately 400 landslides. The analyses of monthly and annual precipitation during the study period show how extreme rainfall events like Hurricane Mitch in October of 1998 have significantly contributed to the initiation of landslides. In addition, the assessment of the slums and neighborhoods affected by landslides during the study period reveals an evident link between the social and physical vulnerability of Tegucigalpa. In order to estimate the reliability of this press-based database, the set of landslides that have been reported as a result of Hurricane Mitch in the press archives has been compared with two inventories based on the interpretation of aerial photographs taken in 1999 and 2001. It is shown that the analysis of the landslide damage left after the hurricane can be enriched with the detailed temporal data provided in the archives and the precise location of these events determined by the aerial photographs. Despite the difficulties faced in the compilation of this database, a good comprehension of the temporal and spatial distribution of landslides in Tegucigalpa has been achieved.

Keywords

Historical data Rainfall-induced landslides Landslide database Tegucigalpa Hurricane Mitch Vulnerability 

References

  1. Aguilar E, Peterson TC, Obando PR, Frutos R, Retana JA, Solera M, Mayorga R (2005) Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J Geophys Res 110(D23):1–15. doi:10.1029/2005JD006119 Google Scholar
  2. Alcantara-Ayala I (2008) On the historical account of disastrous landslides in Mexico: the challenge of risk management and disaster. Adv Geosci 14:159–164CrossRefGoogle Scholar
  3. Alcántara-Ayala I (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 47(2–4):107–124. doi:10.1016/S0169-555X(02)00083-1 CrossRefGoogle Scholar
  4. Alexander D (2005) Vulnerability to landslides. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, New York, pp 175–198Google Scholar
  5. Alfaro EJ (2002) Some characteristics of the annual precipitation cycle in Central America and their relationship with its surrounding tropical oceans. Top Meteoro Oceanog 9(2):88–103Google Scholar
  6. Angel S, Bartley K, Derr M (2004) Rapid urbanization in Tegucigalpa, Honduras: preparing for the doubling of the city’s population in the next twenty-five years, vol 3, PrincetonGoogle Scholar
  7. Bommer JJ, Rodríguez CE (2002) Earthquake-induced landslides in Central America. Eng Geol 63(3–4):189–220. doi:10.1016/S0013-7952(01)00081-3 CrossRefGoogle Scholar
  8. Calcaterra D, Parise M, Palma B (2003) Combining historical and geological data for the assessment of the landslide hazard: a case study from Campania, Italy. Nat Hazards Earth Syst Sci 3:3–16CrossRefGoogle Scholar
  9. Carrara A, Crosta G, Frattini P (2003) Geomorphological and historical data in assessing landslide hazard. Earth Surf Process Landf 28(10):1125–1142. doi:10.1002/esp.545 CrossRefGoogle Scholar
  10. Cruden DM, Varnes DJ (1996) Landslide types and processes. Landslides Invest Mitig Spec Repo 247:36–75Google Scholar
  11. DESINVENTAR (2013) Red de estudios sociales en prevencion de desastres naturales en America Latina. Retrieved 5 Feb 2013. http://online.desinventar.org/desinventar/#HND-20101004
  12. Devoli G, Morales A, Hoeg K (2007a) Historical landslides in Nicaragua: collection and analysis of data. Landslides 4:5–18. doi:10.1007/s10346-006-0048-x CrossRefGoogle Scholar
  13. Devoli G, Strauch W, Chavez G, Hoeg K (2007b) A landslide database for Nicaragua: a tool for landslide-hazard management. Landslides 4(2):163–176. doi:10.1007/s10346-006-0074-8 CrossRefGoogle Scholar
  14. Devoli G, De Blasio F, Elverhoi A, Hoeg K (2009) Statistical analysis of landslide events in Central America and their run-out distance. Geotech Geol Eng 27(1):23–42. doi:10.1007/s10706-008-9209-0 CrossRefGoogle Scholar
  15. Domínguez Cuesta M a J, Jiménez Sánchez M, Rodríguez García A (1999) Press archives as temporal records of landslides in the North of Spain: relationships between rainfall and instability slope events. Geomorphology 30(1–2):125–132. doi:10.1016/S0169-555X(99)00049-5 CrossRefGoogle Scholar
  16. ECLAC (1999) Honduras: assessment of the damage caused by Hurricane Mitch, 1998. Implications for economic and social development and for the environment. Economic Commission for Latin America and the Caribbean, MexicoGoogle Scholar
  17. El Heraldo. (2013). Al menos seis invasiones surgen al ano en la capital de Honduras, El Heraldo. Retrieved from http://www.elheraldo.hn/Secciones-Principales/Metro/Al-menos-seis-invasiones-al-ano-surgen-en-la-capital-de-Honduras#panel1-2
  18. Fay M, Ghesquiere F, Solo T (2003) Desastres Naturales y Pobres Urbanos. En Breve, 32 edn. World BankGoogle Scholar
  19. Flores Peñalba R, Luo Z, Juang CH (2009) Framework for probabilistic assessment of landslide: a case study of El Berrinche. Environ Earth Sci 59(3):489–499. doi:10.1007/s12665-009-0046-0 CrossRefGoogle Scholar
  20. Foster C, Pennington CVL, Culshaw MG, Lawrie K (2012) The national landslide database of Great Britain: development, evolution and applications. Environ Earth Sci 66(3):941–953. doi:10.1007/s12665-011-1304-5 CrossRefGoogle Scholar
  21. Glade T (2001) Landslide hazard assessment and historical landslide data: an inseparable couple? In: Glade T, Albini P, Francés F (eds) The use of historical data in natural hazar assessments. Kluwer, Netherlands, p 153–168Google Scholar
  22. Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58(2):89–107. doi:10.1016/S0013-7952(00)00047-8 CrossRefGoogle Scholar
  23. Guzzetti F, Stark C, Salvati P (2005) Evaluation of flood and landslide risk to the population of Italy. Environ Manag 36(1):15–36. doi:10.1007/s00267-003-0257-1 CrossRefGoogle Scholar
  24. Hardoy J, Pandiella G (2009) Urban poverty and vulnerability to climate change in Latin America. Environ Urban 21(1):203–224. doi:10.1177/0956247809103019 CrossRefGoogle Scholar
  25. Harmeling S, Eckstein D (2012) Global climate risk index 2013. Who suffers most from extreme weather events? Weather-related loss events in 2011 and 1992–2011. Global climate risk index ,8 edn, Germanwatch e.V., p 28Google Scholar
  26. Harp EL, Castañeda M, Held MD (2002) Landslides triggered by Hurricane Mitch in Tegucigalpa, Honduras. US Geological Survey Open File Report 02-0033, DenverGoogle Scholar
  27. Harp EL, Reid ME, McKenna JP, Michael JA (2009) Mapping of hazard from rainfall-triggered landslides in developing countries: examples from Honduras and Micronesia. Eng Geol 104(3–4):295–311. doi:10.1016/j.enggeo.2008.11.010 CrossRefGoogle Scholar
  28. Hilker N, Badoux A, Hegg C (2009) The Swiss flood and landslide damage database 1972–2007. Nat Hazards Earth Syst Sci 9(3):913–925CrossRefGoogle Scholar
  29. Ibsen M-L, Brunsden D (1996) The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor Isle of Wight. Geomorphology 15(3–4):241–258. doi:10.1016/0169-555X(95)00073-E CrossRefGoogle Scholar
  30. JICA (2002) The study on flood control and landslide prevention in Tegucigalpa Metropolitan Area of the Republic of Honduras. Pacific & I Consultants International and Nikken Consultants, TegucigalpaGoogle Scholar
  31. Kalantzi F, Doutsou I, Koukouvelas I (2010) Historical landslides in the Prefecture of Ioannina: collection and analysis of data. Bull Geol Soc Greece 43(3):1350–1360Google Scholar
  32. Kirschbaum DB, Adler R, Hong Y, Hill S, Lerner-Lam A (2010) A global landslide catalog for hazard applications: method, results and limitations. Nat Hazards 52:561–575. doi:10.1007/s11069-009-9401-4 CrossRefGoogle Scholar
  33. Llasat M, Llasat-Botija M, Lopez L (2009) A press database on natural risks and its applications in the study of floods in Northeastern Spain. Nat Hazards Earth Syst Sci 9:2049–2061CrossRefGoogle Scholar
  34. Marchi L, Tecca P (2006) Some observations on the use of data from historical documents in debris-flow studies. Nat Hazards 38(3):301–320. doi:10.1007/s11069-005-0264-z CrossRefGoogle Scholar
  35. Mejia, F. (2000). Construyendo una ciudad mas saludable y sostenible ambientalmente. Estrategia municipal para la superacion de condiciones de vulnerabilidad del Distrito Central, capital de Honduras. Paper presented at the El Impacto de los Desastres Naturales en Areas Urbanas y en la Salud Publica Urbana en Centro America y el Caribe, Guatemala. http://www.cridlac.org/digitalizacion/pdf/spa/doc12922/doc12922.htm
  36. Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3(2):159–173. doi:10.1007/s10346-006-0036-1 CrossRefGoogle Scholar
  37. Petley DN, Dunning SA, Rosser NJ (2005) The analysis of global landslide risk through the creation of a database of worldwide landslide fatalities. In: Hungr O, Fell R, Counture R, Ebergardt E (eds) Landslide risk management. Balkema, Amsterdam, pp 367–374Google Scholar
  38. Petrucci O, Polemio M (2003) The use of historical data for the characterisation of multiple damaging hydrogeological events. Nat Hazards Earth Syst Sci 3:17–30CrossRefGoogle Scholar
  39. Petrucci O, Polemio M, Pasqua AA (2009) Analysis of damaging hydrogeological events: the case of the Calabria Region (Southern Italy). Environ Manag 43(3):483–495. doi:10.1007/s00267-008-9234-z CrossRefGoogle Scholar
  40. Pielke RA, Rubiera J, Landsea C, Fernandez ML, Klein R (2003) Hurricane vulnerability in Latin America and the Caribbean: normalized damage and loss potentials. Nat Hazards Rev 4(3):101–114. doi:10.1061/(ASCE)1527-6988(2003)4:3(101 CrossRefGoogle Scholar
  41. Pineda MA (2004) Identificación y análisis de las áreas susceptibles de los procesos de remoción en masa, en la cuenca alta del rio Grande o Choluteca, en Tegucigalpa, Honduras.C.A. (Masters Degree Thesis), Universidad de Costa RicaGoogle Scholar
  42. Raska P, Klimes J, Dubisar J (2013) Using local archive sources to reconstruct historical landslide occurrence in selected urban regions of the Czech Republic: examples from regions with different historical development. Land Degrad Develop. doi:10.1002/ldr.2192
  43. Restrepo C, Alvarez N (2006) Landslides and their contribution to land-cover change in the mountains of Mexico and Central America. Biotropica 38(4):446–457CrossRefGoogle Scholar
  44. Rodriguez CE (2006) Earthquake-induced landslides. In: Bundschuh J, Alvarado GE (eds) Central America: geology, resources and hazards, vol 2. Taylor and Francis, London, pp 1217–1250Google Scholar
  45. Tropeano D, Turconi L (2004) Using historical documents for landslide, debris flow and stream flood prevention, Applications in Northern Italy. Nat Hazards 31:663–679. doi:10.1023/B:NHAZ.0000024897.71471.f2 CrossRefGoogle Scholar
  46. UNDP-DIPECHO (2010) 14 Barrios Vulnerables a Deslizamientos y Sismos en la Ciudad Informe de Linea Base, Proyecto DIPECHO VIITegucigalpa, MDC, pp 1–42Google Scholar
  47. van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3–4):112–131. doi:10.1016/j.enggeo.2008.03.010 CrossRefGoogle Scholar
  48. Westerberg I, Walther A, Guerrero JL, Coello Z, Halldin S, Xu CY, Lundin LC (2010) Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics. Theor Appl Climatol 101(3–4):381–396. doi:10.1007/s00704-009-0222-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Engineering SciencesUppsala UniversityUppsalaSweden
  2. 2.School of Civil EngineeringNational Autonomous University of HondurasTegucigalpaHonduras

Personalised recommendations