Advertisement

Natural Hazards

, Volume 71, Issue 3, pp 1355–1378 | Cite as

An operational flood warning system for poorly gauged basins: demonstration in the Guadalhorce basin (Spain)

  • P.-A. VersiniEmail author
  • M. Berenguer
  • C. Corral
  • D. Sempere-Torres
Original Paper

Abstract

This paper deals with the presentation of a flood warning system (GFWS) developed for the specific characteristics of the Guadalhorce basin (3,200 km2, SE of Spain), which is poorly gauged and often affected by flash and plain floods. Its complementarity with the European flood alert system (EFAS) has also been studied. At a lower resolution, EFAS is able to provide a flood forecast several days in advance. The GFWS is adapted to the use of distributed rainfall maps (such as radar rainfall estimates), and discharge forecasts are computed using a distributed rainfall–runoff model. Due to the lack of flow measurements, the model parameters calibrated on a small watershed have been transferred in most of the basin area. The system is oriented to provide distributed warnings and fulfills the requirements of ungauged basins. This work reports on the performance of the system on two recent rainfall events that caused several inundations. These results show how the GFWS performed well and was able to forecast the location and timing of flooding. It demonstrates that despite its limitations, a simple rainfall–runoff model and a relatively simple calibration could be useful for event risk management. Moreover, with low resolution and long anticipation, EFAS appears as a good complement tool to improve flood forecasting and compensate for the short lead times of the GFWS.

Keywords

Flood Warning system Hydrology Ungauged basin 

Notes

Acknowledgments

The authors would like to thank Red HIDROSUR (Southern Andalusia Hydrological Network) and the AEMET (Spanish Meteorological Agency) for providing historical hydrometeorological data on the Guadalhorce basin. We would also like to thank the Joint Research Centre (JRC) for providing preliminary EFAS outputs for the studied cases. This work has been carried out within the European 7th FP project IMPRINTS (http://www.imprints-fp7.eu) and the Spanish projects FFGRad (CGL2009-13139) and ProFEWS (CGL2010-15892), and has been supported by the environmental management company EGMASA (currently, Agencia de Medio Ambiente y Agua de Andalucía, Consejería de Medio Ambiente—Junta de Andalucía). The second author is supported by a Ramón y Cajal grant of the Spanish Ministry of Science and Innovation (RYC2010-06521).

References

  1. Alfieri L, Velasco D, Thielen J (2011) Flash flood detection through a multi-stage probabilistic warning system for heavy precipitation events. Adv Geosci 29:69–75CrossRefGoogle Scholar
  2. Atencia A, Rigo T, Sairouni A, Moré J, Bech J, Vilaclara E, Cunillera J, Llasat MC, Garrote L (2010) Improving QPF by blending techniques at the Meteorological Service of Catalonia. Nat Hazards Earth Syst Sci 10(7):1443–1455CrossRefGoogle Scholar
  3. Austin PM (1987) Relation between measured radar reflectivity and surface rainfall. Mon Weather Rev 115:1053–1070CrossRefGoogle Scholar
  4. Barredo JI (2007) Major flood disasters in Europe: 1950–2005. Nat Hazards 42:125–148CrossRefGoogle Scholar
  5. Ben-Zvi A (2009) Rainfall intensity–duration–frequency relationships derived from large partial duration series. J Hydrol 367(1–2):104–114CrossRefGoogle Scholar
  6. Berenguer M, Corral C, Sánchez-Diezma R, Sempere-Torres D (2005) Hydrological validation of a radar-based nowcasting technique. J Hydrometeorol 6(4):532–549CrossRefGoogle Scholar
  7. Berne A, ten Heggeler M, Uijlenhoet R, Delobbe L, Dierickx P, de Wit M (2005) A preliminary investigation of radar rainfall estimation in the Ardennes region and a first hydrological application for the Ourthe catchment. Nat Hazards Earth Syst Sci 5:267–274CrossRefGoogle Scholar
  8. Blöschl G, Sivapalan M (1995) Scale issues in hydrological modelling: a review. Hydrol Process 9(3–4):251–290CrossRefGoogle Scholar
  9. Borga M (2008) Realtime guidance for flash flood risk management. FLOODsite report. T16-08-02. 86 ppGoogle Scholar
  10. Borga M, Degli Esposti S, Norbiato D (2006) Influence of errors in radar rainfall estimates on hydrological modeling prediction uncertainty. Water Resour Res 42(8):1–14Google Scholar
  11. Borga M, Boscolo P, Zanon F, Sangati M (2007) Hydrometeorological analysis of the August 29, 2003 flash flood in the eastern Italian Alps. J Hydrometeorol 8(5):1049–1067CrossRefGoogle Scholar
  12. Carpenter TM, Georgakakos KP (2006) Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. J Hydrol 329(1–2):174–185CrossRefGoogle Scholar
  13. Cole SJ, Moore RJ (2008) Hydrological modelling using raingauge-and radar-based estimators of areal rainfall. J Hydrol 358(3–4):159–181CrossRefGoogle Scholar
  14. Collier CG (2007) Flash flood forecasting: what are the limits of predictability? Q J R Meteorol Soc 133:3–23CrossRefGoogle Scholar
  15. Corral C, Sempere-Torres D, Revilla M, Berenguer M (2000) A semi-distributed hydrological model using rainfall estimates by radar. Application to Mediterranean basins. Phys Chem Earth Part B 25(10–12):1133–1136CrossRefGoogle Scholar
  16. Corral C, Berenguer M, Sempere-Torres D, Escaler I (2002) Evaluation of a conceptual distributed rainfall-runoff model in the Besòs catchment in Catalunya using radar information. Second European Conference on Radar Meteorology. European Meteorological Society, Delft, Netherlands, pp 409–415Google Scholar
  17. Corral C, Velasco D, Forcadell D, Sempere-Torres D, Velasco E (2009) Advances in radar-based flood warning systems The EHIMI system and the experience in the Besos flash-flood pilot basin. In: Samuels P, Huntington S, Allsop W, Harrop J (eds) Flood risk management: research and practice. Taylor & Francis Group, LondonGoogle Scholar
  18. Costa JE, Jarett RD (2008) An evaluation of selected extraordinary floods in the United States reported by the US, Geological Survey and implications for future advancement of flood science. Reston, VirginiaGoogle Scholar
  19. Creutin J-D, Borga M (2003) Radar hydrology modifies the monitoring of flash flood hazard. Hydrol Process 17(7):1453–1456CrossRefGoogle Scholar
  20. Creutin JD, Borga M, Lutoff C, Scolobig A, Ruin I, Créton-Cazanave L (2009) Catchment dynamics and social response during flash floods: the potential of radar rainfall monitoring for warning procedures. Meteorol Appl 16(1):115–125CrossRefGoogle Scholar
  21. Delrieu G, Creutin JD, Andrieu H (1995) Simulation of radar mountain returns using a digitized terrain model. J Atmos Ocean Technol 12(5):1038–1049CrossRefGoogle Scholar
  22. Delrieu G, Braud I, Berne A, Borga M, Boudevillain B, Fabry F, Freer J, Gaume E, Nakakita E, Seed A, Tabary P, Uijlenhoet R (2009) Weather radar and hydrology. Adv Water Resour 32(7):969–974CrossRefGoogle Scholar
  23. Fabry F, Zawadzki I (1995) Long-term radar observations of the melting layer of precipitation and their interpretation. J Atmos Sci 52(7):838–851CrossRefGoogle Scholar
  24. Francés F, Benito J (1995) La modelización ditribuida con pocos parametros de las crecidas. Ingenieria del Agua 2(4):7–24Google Scholar
  25. Franco M (2008) Estimación cuantitativa de la lluvia mediante radar meteorológico. Corrección del error asociado a la variación vertical de la reflectividad, Universitat Politècnica de Catalunya, Barcelona, Spain, 251pGoogle Scholar
  26. Franco M, Sanchez-Diezma R, Sempere-Torres D (2006) Improvements in weather radar rain rate estimates using a method for identifying the vertical profile of reflectivity from volume radar scans. Meteorol Z 15(5):521–536CrossRefGoogle Scholar
  27. Gaume E, Bain V, Bernardara P, Newinger O, Barbuc M, Bateman A, Blaskovicov L, Blöschl G, Borga M, Dumitrescu A, Daliakopoulos I, Garcia J, Irimescu A, Kohnova S, Koutroulis A, Marchi L, Matreata S, Medina V, Preciso E, Sempere-Torres D, Stancalie G, Szolgay J, Tsanis I, Velasco D, Viglione A (2009) A compilation of data on European flash floods. J Hydrol 367(1–2):70–78CrossRefGoogle Scholar
  28. Georgakakos KP (2006) Analytical results for operational flash flood guidance. J Hydrol 317(1–2):81–103CrossRefGoogle Scholar
  29. Germann U, Berenguer M, Sempere-Torres D, Zappa M (2009) REAL—ensemble radar precipitation estimation for hydrology in a mountainous region. Q J R Meteorol Soc 135(639):445–456CrossRefGoogle Scholar
  30. Hajat S, Ebi KL, Kovats S, Menne B, Edwards S, Haines A (2003) The human health consequences of flooding in Europe and the implications for public health: a review of the evidence. Appl Environ Sci Public Health 1:13–21Google Scholar
  31. IACOW (1982) Guidelines for determining flood flow frequency. Bulletin 17B of the Hydrology Subcommittee. US Geological Survey, Reston, VAGoogle Scholar
  32. Jasper K, Gurtz J, Lang H (2002) Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model. J Hydrol 267(1–2):40–52CrossRefGoogle Scholar
  33. Javelle P, Fouchier C, Arnaud P, Lavabre J (2010) Flash flood warning at ungauged locations using radar rainfall and antecedent soil moisture estimations. J Hydrol 394(1–2):267–274CrossRefGoogle Scholar
  34. Joss J, Waldvogel A (1990) Precipitation measurement and hydrology. In: Atlas D (ed) Radar in meteorology. American Meteorological Society, Boston, pp 577–606Google Scholar
  35. Lavabre J, Gregoris Y (2006) AIGA: un dispositif d’alerte des crues. Application à la région méditerranéenne française, Fifth FRIEND World Conference. IAHS, Havana, Cuba, pp 214–219Google Scholar
  36. Li PW, Lai EST (2004) Short-range quantitative precipitation forecasting in Hong Kong. J Hydrol 288(1–2):189–209CrossRefGoogle Scholar
  37. Lin C, Vasi S, Kilambi A, Turner B, Zawadzki I (2005) Precipitation forecast skill of numerical weather prediction models and radar nowcasts. Geophys Res Lett 32(14):L14801Google Scholar
  38. Meon G (2006) Past and present challenges in flash flood forecasting. First International Workshop on Flash Flood Forecasting, San Jose, Costa Rica, pp 2Google Scholar
  39. Merz R, Blöschl G (2009) A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria. Water Resour Res 45(1):W01405Google Scholar
  40. Mockus V (1957) Use of storm and watersheds characteristics in synthetic hydrograph analysis and application. Soil Conservation Service. U.S. Dept. of Agriculture, WashingtonGoogle Scholar
  41. MOPU (1990) Norma 5.2-IC, drenaje superficial: instrucción de carreteras. Ministerio de Obras Públicas y Urbanismo, Dirección General de Carreteras, MadridGoogle Scholar
  42. MOPU (1999) Máximas Lluvias de la España peninsular. Ministerio de Obras Públicas y Urbanismo, Dirección General de Carreteras, MadridGoogle Scholar
  43. Moulin L, Gaume E, Obled C (2009) Uncertainties on mean areal precipitation: assessment and impact on streamflow simulations. Hydrol Earth Syst Sci 13(2):99–114CrossRefGoogle Scholar
  44. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290CrossRefGoogle Scholar
  45. Norbiato D, Borga M, Sangati M, Zanon F (2007) Regional frequency analysis of extreme precipitation in the eastern Italian Alps and the August 29, 2003 flash flood. J Hydrol 345:149–166CrossRefGoogle Scholar
  46. Norbiato D, Borga M, Degli Esposti S, Gaume E, Anquetin S (2008) Flash flood warning based on rainfall thresholds and soil moisture conditions: an assessment for gauged and ungauged basins. J Hydrol 362(3–4):274–290CrossRefGoogle Scholar
  47. Perrin C, Michel C, Andréassian V (2001) Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J Hydrol 242(3–4):275–301CrossRefGoogle Scholar
  48. Reed S, Koren V, Smith M, Zhang Z, Moreda F, Seo D-J, Participants D (2004) Overall distributed model intercomparison project results. J Hydrol 298(1–4):27–60CrossRefGoogle Scholar
  49. Reed S, Schaake J, Zhang Z (2007) A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. J Hydrol 337(3–4):402–420CrossRefGoogle Scholar
  50. Rossa A, Bruen M, Fruehwald D, Macpherson B, Holleman I, Michelson D, Michaelides S (2005) Use of radar observations in hydrology and NWP models, Brussels. 292 ppGoogle Scholar
  51. Rozalis S, Morin E, Yair Y, Price C (2010) Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. J Hydrol 394(1–2):245–255CrossRefGoogle Scholar
  52. Sánchez-Diezma R, Sempere-Torres D, Delrieu G, Zawadzki I (2001) An improved methodology for ground clutter substitution based on a pre-classification of precipitation types. 30th international conference on radar meteorology. American meteorological society, Munich, Germany, pp 271–273Google Scholar
  53. Schiemann R, Liniger MA, Frei C (2010) Reduced space optimal interpolation of daily rain gauge precipitation in Switzerland. J Geophys Res 115(14):D14109CrossRefGoogle Scholar
  54. Sempere-Torres D, Corral C, Raso J, Malgrat P (1999) Use of weather radar for combined sewer overflows monitoring and control. J Environ Eng 125:372–380CrossRefGoogle Scholar
  55. Siccardi F, Boni G, Ferraris L, Rudari R (2005) A hydrometeorological approach for probabilistic flood forecast. J Geophys Res 110:D05101Google Scholar
  56. Szymkiewicz R (2002) An alternative IUH for the hydrological lumped models. J Hydrol 259(1–4):246–253CrossRefGoogle Scholar
  57. Tanguy J-M, Carriere J-M, le Trionnaire Y, Schoen R (2005) Réorganisation de l’annonce des crues en France. La Houille Blanche 2:44–48CrossRefGoogle Scholar
  58. Thielen J, Bartholmes J, Ramos M-H, de Roo A (2009) The European flood alert system—Part 1: concept and development. Hydrol Earth Syst Sci 13(2):125–140CrossRefGoogle Scholar
  59. Todini E (1988) Rainfall-runoff modeling—past, present and future. J Hydrol 100(1–3):341–352CrossRefGoogle Scholar
  60. Van Der Knijff JM, Younis J, De Roo APJ (2010) LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. Int J Geogr Inf Sci 24(2):189–212CrossRefGoogle Scholar
  61. Velasco-Forero CA, Sempere-Torres D, Cassiraga EF, Gómez-Hernández JJ (2009) A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv Water Resour 32:986–1002CrossRefGoogle Scholar
  62. Versini P-A (2012) Use of radar rainfall estimates and forecasts to prevent flash flood in real time by using a road inundation warning system. J Hydrol 416–417:157–170CrossRefGoogle Scholar
  63. Versini P-A, Gaume E, Andrieu H (2010) Application of a distributed hydrological model to the design of a road inundation warning system for flash flood prone areas. Nat Hazards Earth Syst Sci 10(4):805–817CrossRefGoogle Scholar
  64. Versini P-A, Velasco M, Cabello A, Sempere-Torres D (2013) Hydrological impact of forest fires and climate change in a Mediterranean basin. Nat Hazards 66(20):609–628CrossRefGoogle Scholar
  65. Viviroli D, Zappa M, Gurtz J, Weingartner R (2009) An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environ Model Softw 24(10):1209–1222CrossRefGoogle Scholar
  66. Vivoni ER, Entekhabi D, Bras RL, Ivanov VY, Van Horne MP, Grassotti C, Hoffman RN (2006) Extending the predictability of hydrometeorological flood events using radar rainfall nowcasting. J Hydrometeorol 7(4):660–677CrossRefGoogle Scholar
  67. Weeks WD, Boughton WC (1987) Tests of ARMA model forms for rainfall-runoff modelling. J Hydrol 91(1–2):29–47CrossRefGoogle Scholar
  68. Wright DB, Smith JA, Villarini G, Baeck ML (2013) Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition. J Hydrol 488:150–165Google Scholar
  69. Zappa M, Beven KJ, Bruen M, Cofiño AS, Kok K, Martin E, Nurmi P, Orfila B, Roulin E, Schröter K, Seed A, Szturc J, Vehviläinen B, Germann U, Rossa A (2010) Propagation of uncertainty from observing systems and NWP into hydrological models: COST-731 Working Group 2. Atmos Sci Lett 11(2):83–91CrossRefGoogle Scholar
  70. Zappa M, Jaun S, Germann U, Walser A, Fundel F (2011) Superposition of three sources of uncertainties in operational flood forecasting chains. Atmos Res 100(2–3):246–262CrossRefGoogle Scholar
  71. Zawadzki I (1984) Factors affecting the precision of radar measurements of rain. Conference on Radar Meteorology 22nd. American Meteorological Society, Zurich, Switzerland, pp 251–256Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • P.-A. Versini
    • 1
    • 2
    Email author
  • M. Berenguer
    • 1
  • C. Corral
    • 1
  • D. Sempere-Torres
    • 1
  1. 1.Centre de Recerca Aplicada en HidrometeorologiaBarcelonaSpain
  2. 2.Laboratoire Eau Environnemnent et Systèmes UrbainsEcole Nationale des Ponts et ChausséesChamps sur MarneFrance

Personalised recommendations