Natural Hazards

, Volume 71, Issue 1, pp 493–522 | Cite as

A model for developing best practice volcano monitoring: a combined threat assessment, consultation and network effectiveness approach

  • Craig A. Miller
  • Arthur D. Jolly
Original Paper


This paper presents a combined approach to achieving best practice volcano monitoring through a review of New Zealand’s volcano-monitoring capability as established under the GeoNet project. A series of benchmark, consultation and network performance studies were undertaken to provide a comprehensive review of volcano monitoring in New Zealand and to establish plans for future improvements in capability. The United States Geological Survey National Volcano Early Warning System method was applied to benchmark the established monitoring networks against recommendations for instrumentation based on a volcano’s threat level. Next, a consultative study of New Zealand’s volcanology research community was undertaken to canvass opinions on what future directions GeoNet volcano monitoring should take. Once the seismic network infrastructure had been built, a noise floor analysis was conducted to identify stations with poor site noise characteristics. Noise remediation for poor sites has been implemented by either re-locating the site or placing sensors in boreholes. Quality control of Global Navigation Satellite System networks is undertaken through the use of multipath parameters derived from routine processing. Finally, the performance of the monitoring networks is assessed against two recent eruptions at Mount Tongariro and White Island. This combined approach can be used as a model to assess the need for future monitoring levels on any volcano.


Volcano monitoring Threat assessment New Zealand Volcanology Consultation GeoNet 



National Volcano Early Warning System


New Zealand Volcano Early Warning System



Thanks to the New Zealand volcanological community for contributing their ideas and thoughts as to best practice monitoring for New Zealand. This paper benefited from reviews by Gill Jolly, Seth Moran and an anonymous reviewer.


  1. Ashenden CL, Lindsay JM, Sherburn S, Smith IEM, Miller CA, Malin PE (2011) Some challenges of monitoring a potentially active volcanic field in a large urban area: Auckland volcanic field New Zealand. Nat Hazards 59(1):507–528. doi: 10.1007/s11069-011-9773-0 CrossRefGoogle Scholar
  2. Battaglia M, Hill DP (2009) Analytical modeling of gravity changes and crustal deformation at volcanoes: the long valley caldera, California, case study. Tectonophysics 471(1–2):45–57. doi: 10.1016/j.tecto.2008.09.040 CrossRefGoogle Scholar
  3. Beavan J (2005) Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from U.S. deep drilled braced monuments. J Geophys Res Solid Earth 110(B8):1–13Google Scholar
  4. Bolic T, Sivcev Z (2011) Eruption of eyjafjallajokull in Iceland experience of European air traffic management. Transp Res Rec 2214:136–143. doi: 10.3141/2214-17 CrossRefGoogle Scholar
  5. Bonanno A, Palano M, Privitera E, Gresta S, Puglisi G (2011) Magma intrusion mechanisms and redistribution of seismogenic stress at Mt. Etna volcano (1997–1998). Terra Nova 23(5):339–348. doi: 10.1111/j.1365-3121.2011.01019.x CrossRefGoogle Scholar
  6. Chadwick WW Jr, Jonsson S, Geist DJ, Poland M, Johnson DJ, Batt S, Harpp KS, Ruiz A (2011) The may 2005 eruption of Fernandina volcano, Galapagos: the first circumferential dike intrusion observed by GPS and InSAR. Bull Volcanol 73(6):679–697. doi: 10.1007/s00445-010-0433-0 CrossRefGoogle Scholar
  7. Currie S (2009) Report of the Ruapehu crater rim deformation survey 25 March 2009. Report prepared for the department of conservation by energy surveys, Taupo NZ. 11 pp plus figures and tablesGoogle Scholar
  8. Department of Conservation (2006) Tongariro national park management plan 2006–2016. Tongariro/Taupo conservation managament planning series 4. ISSN: 0111-5804Google Scholar
  9. Dzurisin D (2007) Volcano deformation—geodetic monitoring techniques. Springer, Springer-Praxis Books in Geophysical Sciences, Berlin 441Google Scholar
  10. Estey LH, Meertens CM (1999) TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solut 3(1):42–49. doi: 10.1007/pl00012778 CrossRefGoogle Scholar
  11. Ewert JW, Guffanti M, Murray T (2005) An assessment of the volcanic threat and monitoring capabilities in the United States: framework for a national volcano early warning system. USGS open file report 2005–1164Google Scholar
  12. Fournier N, Jolly AD, Miller C (2011) Ghost tilt signal during transient ground surface deformation events: insights from the September 3, 2010 Mw7.1 darfield earthquake, New Zealand. Geophys Res Lett 38:L16305. doi: 10.1029/2011GL04813 Google Scholar
  13. Hagerty M, Benites R (2003) Tornillos beneath Tongariro volcano, New Zealand. J Volcanol Geotherm Res 125(1–2):151–169. doi: 10.1016/s0377-0273(03)00094-5 CrossRefGoogle Scholar
  14. Hurst AW, McGinty PJ (1999) Earthquake swarms to the west of Mt Ruapehu preceding its 1995 eruption. J Volcanol Geotherm Res 90(1–2):19–28. doi: 10.1016/S0377-0273(99)00019-0 CrossRefGoogle Scholar
  15. Hurst AW, Sherburn S (1993) Volcanic tremor at Ruapehu—characteristics and implications for the resonant source. N Z J Geol Geophys 36(4):475–485CrossRefGoogle Scholar
  16. Hurst T, Smith W (2010) Volcanic ashfall in New Zealand—probabilistic hazard modelling for multiple sources. N Z J Geol Geophys 53(1):1–14CrossRefGoogle Scholar
  17. Hurst AW, Rickerby PC, Scott BJ, Hashimoto T (2004) Magnetic field changes on White Island, New Zealand, and the value of magnetic changes for eruption forecasting. J Volcanol Geotherm Res 136(1–2):53–70CrossRefGoogle Scholar
  18. Hurst T, Christenson B, Cole-Baker J (2012) Use of a weather buoy to derive improved heat and mass balance parameters for Ruapehu Crater Lake. J Volcanol Geotherm Res 235:23–28CrossRefGoogle Scholar
  19. Inguaggiato S, Mazot A, Ohba T (2011) Monitoring active volcanoes: the geochemical approach. Ann Geophys 54(2):115–119. doi: 10.4401/ag-5187 Google Scholar
  20. Itaba S, Koizumi N (2007) Earthquake-related changes in groundwater levels at the Dogo hot spring Japan. Pure Appl Geophys 164(12):2397–2410. doi: 10.1007/s00024-007-0279-3 CrossRefGoogle Scholar
  21. Jenkins S, Magill C, McAneney J, Hurst T (2008) Multistage volcanic events: Tephra hazard simulations for the Okataina Volcanic Center New Zealand. J Geophys Res 113 (4). doi: 10.1029/2007jf000787
  22. Jolly AD, Sherburn S, Jousset P, Kilgour G (2010) Eruption source processes derived from seismic and acoustic observations of the 25 September 2007 Ruapehu eruption-North Island, New Zealand. J Volcanol Geotherm Res 191(1–2):33–45. doi: 10.1016/j.jvolgeores.2010.01.009 CrossRefGoogle Scholar
  23. Jolly AD, Neuberg J, Jousset P, Sherburn S (2012) A new source process for evolving repetitious earthquakes at Ngauruhoe volcano, New Zealand. J Volcanol Geotherm Res 215:26–39. doi: 10.1016/j.jvolgeores.2011.11.010 CrossRefGoogle Scholar
  24. Kaye G, Cole J, King A, Johnston D (2009) Comparison of risk from pyroclastic density current hazards to critical infrastructure in Mammoth Lakes, California, USA, from a new Inyo craters rhyolite dike eruption versus a dacitic dome eruption on Mammoth Mountain. Nat Hazards 51:477–499CrossRefGoogle Scholar
  25. Lyons JJ, Waite GP, Ichihara M, Lees JM (2012) Tilt prior to explosions and the effect of topography on ultra-long-period seismic records at Fuego volcano, Guatemala. Geophys Res Lett 39:L08305. doi: 10.1029/2012GL051184 Google Scholar
  26. Marzocchi W, Sandri L, Selva J (2008) BET_EF: a probabilistic tool for long-and short-term eruption forecasting. Bull Volcanol 70(5):623–632. doi: 10.1007/s00445-007-0157-y CrossRefGoogle Scholar
  27. Marzocchi W, Sandri L, Selva J (2010) BET_VH: a probabilistic tool for long-term volcanic hazard assessment. Bull Volcanol 72(6):705–716. doi: 10.1007/s00445-010-0357-8 CrossRefGoogle Scholar
  28. Mazot A, Bernard A, Fischer T, Inguaggiato S, Sutawidjaja IS (2008) Chemical evolution of thermal waters and changes in the hydrothermal system of Papandayan volcano (West Java, Indonesia) after the November 2002 eruption. J Volcanol Geotherm Res 178(2):276–286. doi: 10.1016/j.jvolgeores.2008.06.022 CrossRefGoogle Scholar
  29. McNamara DE, Boaz RI (2006) Seismic noise analysis system, power spectral density probability density function; stand alone software package. U.S.G.S. technical report, vol. 2005–1438Google Scholar
  30. McNamara DE, Boaz RI (2011) PQLX: a seismic data quality control system: description, applications and users manual. U.S.G.S open file report, vol. 2010–1292Google Scholar
  31. McNamara DE, Buland RP (2004) Ambient noise levels in the continental United States. Bull Seismol Soc Am 94(4):1517–1527CrossRefGoogle Scholar
  32. McNutt SR (2005) Volcanic seismology. In: annual review of earth and planetary sciences. Annu Rev Earth Planet Sci 33:461–491. doi: 10.1146/ CrossRefGoogle Scholar
  33. Miller CA (2011) Threat assessment of New Zealand’s volcanoes and their current and future monitoring requirements GNS science report 2010/55Google Scholar
  34. Miller CA, Jolly A (2012) Results of consultation with the New Zealand volcanology research community for future GeoNet funding directions. GNS science report 2012/18Google Scholar
  35. Miller CA, Werner CA, Herd RA, Edmonds MA (2006) Remotely operated, automatic scanning DOAS system at White Island, New Zealand. In: AGU (ed) EOS trans. AGU, San Francisco, AGU, pp V53A–1722Google Scholar
  36. Moran SC, Freymueller JT, LaHusen RG, McGee KA, Poland MP, Power JA, Schmidt DA, Schneider DJ, Stephens G, Werner CA, White RA (2008) Instrumentation recommendations for volcano monitoring at U.S. volcanoes under the national volcano early warning system. USGS scientific investigations report, vol. 2008–5114Google Scholar
  37. Mordret A, Jolly AD, Duputel Z, Fournier N (2010) Monitoring of phreatic eruptions using Interferometry on retrieved cross-correlation function from ambient seismic noise: results from Mt. Ruapehu, New Zealand. J Volcanol Geotherm Res 191(1–2):46–59. doi: 10.1016/j.jvolgeores.2010.01.010 CrossRefGoogle Scholar
  38. Peltier A, Hurst T, Scott B, Cayol V (2009a) Structures involved in the vertical deformation at Lake Taupo (New Zealand) between 1979 and 2007: new insights from numerical modelling. J Volcanol Geotherm Res 181(3–4):173–184CrossRefGoogle Scholar
  39. Peltier A, Scott B, Hurst T (2009b) Ground deformation patterns at White Island volcano (New Zealand) between 1967 and 2008 deduced from levelling data. J Volcanol Geotherm Res 181(3–4):207–218CrossRefGoogle Scholar
  40. Petersen J (1993) Observations and modelling of background seismic noise. USGS open file report, vol. 93–322Google Scholar
  41. Petersen T, Gledhill K, Chadwick M, Gale NH, Ristau J (2011) The New Zealand national seismograph network. Seismol Res Lett 82(1):9–20. doi: 10.1785/Gssrl.82.1.9 CrossRefGoogle Scholar
  42. Pink B (2006) Research report on regional gross domestic product. Statistics New ZealandGoogle Scholar
  43. Poland M, Hamburger M, Newman A (2006) The changing shapes of active volcanoes: history, evolution, and future challenges for volcano geodesy. J Volcanol Geotherm Res 150(1–3):1–13. doi: 10.1016/j.jvolgeores.2005.11.005 CrossRefGoogle Scholar
  44. Rastin SJ, Unsworth CP, Gledhill KR, McNamara DE (2012) A detailed noise characterization and sensor evaluation of the North Island of New Zealand using the PQLX data quality control system. Bull Seismol Soc Am 102(1):98–113. doi: 10.1785/0120110064 CrossRefGoogle Scholar
  45. Roman DC, De Angelis S, Latchman JL, White R (2008) Patterns of volcanotectonic seismicity and stress during the ongoing eruption of the Soufriere Hills Volcano, Montserrat (1995–2007). J Volcanol Geotherm Res 173(3–4):230–244. doi: 10.1016/j.jvolgeores.2008.01.014 CrossRefGoogle Scholar
  46. Savage MK, Wessel A, Teanby NA, Hurst AW (2010) Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand. J Geophys Res Solid Earth, 115. doi: 10.1029/2010jb007722
  47. Scott BJ, Travers J (2009) Volcano monitoring in New Zealand and links to the SW Pacific via the Wellingotn VAAC. Nat Hazards 51:263–273. doi: 10.1007/s11069-009-9354-7 CrossRefGoogle Scholar
  48. Segall P (2010) Earthquake and volcano deformation. Princeton, Princeton University Press. ISBN-13: 9780691133027Google Scholar
  49. Sherburn S, Scott BJ, Olsen J, Miller C (2007) Monitoring seismic precursors to an eruption from the Auckland volcanic field, New Zealand. N Z J Geol Geophys 50(1):1–11CrossRefGoogle Scholar
  50. Shibata T, Akita F, Hirose W, Ikeda R (2008) Hydrological and geochemical change related to volcanic activity of Usu volcano, Japan. J Volcanol Geotherm Res 173(1–2):113–121. doi: 10.1016/j.jvolgeores.2007.12.040 CrossRefGoogle Scholar
  51. Simkin T, Siebert L (1994) Volcanoes of the world. Geoscience Press, TusconGoogle Scholar
  52. Taig (2002) Ruapehu lahar residual risk assessment. A report produced for the Ministry of Civil Defence and Emergency Management, New Zealand.$file/RuapehuReportMainText.pdf
  53. Titzschkau T, Savage M, Hurst T (2010) Changes in attenuation related to eruptions of Mt. Ruapehu Volcano, New Zealand. J Volcanol Geotherm Res 190(1–2):168–178. doi: 10.1016/j.jvolgeores.2009.07.012 CrossRefGoogle Scholar
  54. Venezky D, Newhall C (2007) WOVOdat design document: the schema, table descriptions, and create table statements for the database of worldwide volcanic unrest (WOVOdat Version 1.0). USGS open file report 2007–1117Google Scholar
  55. Werner C, Christenson BW, Hagerty M, Britten K (2006) Variability of volcanic gas emissions during a crater lake heating cycle at Ruapehu Volcano, New Zealand. J Volcanol Geothermal Res 154(3–4):291–302. doi: 10.1016/j.jvolgeores.2006.03.017 CrossRefGoogle Scholar
  56. Werner C, Hurst T, Scott B, Sherburn S, Christenson BW, Britten K, Cole-Baker J, Mullan B (2008) Variability of passive gas emissions, seismicity, and deformation during crater lake growth at White Island Volcano, New Zealand, 2002–2006. J Geophys Res Solid Earth 113 (B1). doi: 10.1029/2007jb005094
  57. Werner CA, Doukas MP, Kelly PJ (2011) Gas emissions from failed and actual eruptions from Cook Inlet Volcanoes, Alaska, 1989–2006. Bull Volcanol 73(2):155–173. doi: 10.1007/s00445-011-0453-4 CrossRefGoogle Scholar
  58. Wilson CJN (1993) Stratigraphy, chronology, styles and dynamics of late quaternary eruptions from Taupo volcano, New Zealand. Philos Trans R Soc Lond A343:205–306CrossRefGoogle Scholar
  59. Zlotnicki J, Sasai Y, Yvetot P, Nishida Y, Uyeshima M, Fauquet F, Utada H, Takahashi Y, Donnadieu G (2003) Resistivity and self-potential changes associated with volcanic activity: the July 8, 2000 Miyake-jima eruption (Japan). Earth Planet Sci Lett 205(3–4):139–154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Wairakei Research CentreGNS ScienceTaupoNew Zealand

Personalised recommendations