Natural Hazards

, Volume 71, Issue 1, pp 563–585

Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations

  • A. Rashki
  • D. G. Kaskaoutis
  • P. G. Eriksson
  • C. J. de W. Rautenbach
  • C. Flamant
  • F. Abdi Vishkaee
Original Paper


Satellite remote sensing provides important observational constraints for monitoring dust life cycle and improving the understanding of its effects on local to global scales. The present work analyzes the dust aerosol patterns over the arid environment of the Sistan region in southeastern Iran, by means of multiple satellite platforms aiming to reveal the spatio-temporal distribution and trends. The dataset includes records of Aerosol Index (AI) from Total Ozone Mapping Spectrometer (TOMS) (1978–2001) and 6-year AI records from the Ozone Monitoring Instrument (OMI) aboard Aura. Moreover, the aerosol optical depth is analyzed through 11-year records from Multi-angle Imaging Spectroradiometer (MISR) aboard Terra (2000–2010) and from Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra (2000–2007) and Aqua (2002–2011). The main focus is to determine the similarities and differences in dust variability over southwest Asia, in general, and the Sistan region, in particular. The results show a marked seasonal cycle with high aerosol loading during summer and lower in winter, while MISR, MODIS, and TOMS/OMI observations agree in both terms of monthly and seasonally mean spatial and temporal patterns. The higher aerosol concentrations during summer are interpreted as a result of the combined effect of the seasonal drying of the Hamoun lakes and the strong northerly Levar winds favoring dust erosion from the alluvial deposits in Sistan. After prolonged drought period, the dust aerosol load over the area has increased in the beginning of the 2000 s and decreased after 2004, thereby leading to an overall declining trend during the last decade. Such a trend is absent during the winter period when dust emission over the region is minimal.


Aerosol variability Remote sensing Dust Sistan Hamoun lakes 


  1. Abdi Vishkaee F, Flamant C, Cuesta J, Oolman L, Flamant P, Khalesifard HR (2012) Dust transport over Iraq and northwest Iran associated with winter Shamal: a case study. J Geophys Res 117(d03201):14. doi:10.1029/2011jd016339 Google Scholar
  2. Alam K, Qureshi S, Blaschke T (2011) Monitoring Spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmos Environ 45:4641–4651CrossRefGoogle Scholar
  3. Alpert P, Kishcha P, Shtivelman A, Krichak SO, Joseph JH (2004) Vertical distribution of Saharan dust based on 2.5-year model predictions. Atmos Res 70:109–130CrossRefGoogle Scholar
  4. Antón M, Loyola D, Clerbaux C, López M, Vilaplana JM, Banón M, Hadji-Lazaro J, Valks P, Hao N, Zimmer W, Coheur PF, Hurtmans D, Alados-Arboledas L (2011) Validation of the Metop-A total ozone data from GOME-2 and IASI using reference ground-based measurements at the Iberian Peninsula. Remote Sens Environ 115:1380–1386CrossRefGoogle Scholar
  5. Badarinath KVS, Kharol SK, Sharma AR (2009) Long-range transport of aerosols from agriculture crop residue burning in Indo-Gangetic Plains—a study using LIDAR, ground measurements and satellite data. J Atmos Solar Terr Phys 71:112–120CrossRefGoogle Scholar
  6. Baddock MC, Bullard JE, Bryant RG (2009) Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sens Environ 113:1511–1528CrossRefGoogle Scholar
  7. Bollasina M, Nigam S, Lau K-M (2008) Absorbing aerosols and summer monsoon evolution over South Asia: an observational portrayal. J Clim 21:3221–3239CrossRefGoogle Scholar
  8. Christopher SA, Gupta P, Johnson B, Brindley H, Haywood J, Hsu C (2011) Multi-sensor satellite remote sensing of dust aerosols over North Africa during GERBILS. Q J R Meteorol Soc 137:1168–1178. doi:10.1002/qj.863 CrossRefGoogle Scholar
  9. Curier RL, Veefkind JP, Braak R, Veihelmann B, Torres O, de Leeuw G (2008) Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: application to western Europe. J Geophys Res 113:D17S90. doi:10.1029/2007JD008738 Google Scholar
  10. De Graaf M, Stammes P, Torres O, Koelemeijer RBA (2005) Absorbing Aerosol Index: sensitivity analysis, application to GOME and comparison with TOMS. J Geophys Res 110:D01201. doi:10.1029/2004JD005178 Google Scholar
  11. Dee D et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  12. Deepshikha S, Satheesh SK, Srinivasan J (2005) Regional distribution of absorbing efficiency of dust aerosols over India and adjacent continents inferred using satellite remote sensing. Geophys Res Lett 32(3):L03811CrossRefGoogle Scholar
  13. Dey S, Di Girolamo L (2010) A climatology of aerosol optical and microphysical properties over the Indian subcontinent from nine years (2000–2008) of Multiangle Imaging SpectroRadiometer (MISR) data. J Geophys Res 115:D15204. doi:10.1029/2009JD013395
  14. Dey S, Di Girolamo L (2011) A decade of change in aerosol properties over the Indian subcontinent. Geophys Res Lett 38:L14811Google Scholar
  15. Diner DJ, Ackerman TP, Braverman AJ, Bruegge CJ, Chopping MJ, Clothiaux EE, Davies R, Di Girolamo L, Kahn RA, Knyazikhin Y, Liu Y, Marchand R, Martonchik JV, Muller J-P, Nolin AW, Pinty B, Verstraete MM, Wu DL, Garay MJ, Kalashnikova OV, Davis AB, Davis ES, Chipman RA (2010) Ten years of MISR observations from TERRA: looking back, ahead and in between. In: Proceedings of the 2010 IEEE international geoscience and remote sensing symposium, Honolulu, HI, 2010Google Scholar
  16. Engelbrecht JP, McDonald EV, Gillies JA, Jayanty RKM, Casuccio G, Gertler AW (2009) Characterizing mineral dusts and other aerosols from the Middle East—Part 1: ambient sampling. Inhalation Toxicol 21:297–326CrossRefGoogle Scholar
  17. Engelstaedter S, Tegen I, Washington R (2006) North African dust emissions and transport. Earth Sci Rev 79:73–100CrossRefGoogle Scholar
  18. Gautam R, Hsu NC, Lau K-M, Tsay S-C, Kafatos M (2009a) Enhanced pre-monsoon warming over the Himalayan-Gangetic region from 1979 to 2007. Geophys Res Lett 36:L07704. doi:10.1029/2009GL037641 Google Scholar
  19. Gautam R, Liu Z, Singh RP, Hsu NC (2009b) Two contrasting dust-dominant periods over India observed from MODIS and CALIPSO data. Geophys Res Lett 36:L06813. doi:10.1029/2008GL036967 Google Scholar
  20. Gautam R, Hsu NC, Tsay SC, Lau KM, Holben B, Bell S (2011) Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season. Atmos Chem Phys 11:12841–12863CrossRefGoogle Scholar
  21. Ginoux P, Prospero JM, Gill TE, Hsu CN, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 50:RG3005. doi:10.1029/2012RG000388 Google Scholar
  22. Goudie AS, Middleton NJ (2006) Desert dust in the global system. Springer, BerlinGoogle Scholar
  23. Guan H, Esswein R, Lopez J, Bergstrom R, Warnock A, Follette-Cook M, Fromm M, Iraci L (2010) A multi-decadal history of biomass burning plume heights identified using aerosol index measurements. Atmos Chem Phys Discuss 10:1e25CrossRefGoogle Scholar
  24. Gupta P, Patadia F, Christopher SA (2008) Multi-sensor data product fusion for aerosol research. IEEE Trans Geosci Remote Sens 46:1407–1415. doi:10.1109/TGRS.2008.916087 CrossRefGoogle Scholar
  25. Hatzianastassiou N, Matsoukas C, Fotiadi A, Pavlakis KG, Drakakis E, Hatzidimitriou D, Vardavas I (2005) Global distribution of Earth’s surface shortwave radiation budget. Atmos Chem Phys Discuss 5(4):4545–4597CrossRefGoogle Scholar
  26. Haywood JM, Johnson BT, Osborne SR, Baran AJ, Brooks M, Milton SF, Mulcahy J, Walters D, Allan RP, Klaver A, Formenti P, Brindley HE, Christopher S, Gupta P (2011) Motivation, rationale and key results from the GERBILS Saharan dust measurement campaign. Q J R Meteorol Soc 137:1106–1116. doi:10.1002/qj.797 CrossRefGoogle Scholar
  27. Hsu NC, Herman JR, Torres O, Holben BN, Tanre D, Eck TF, Smirnov A, Chatenet B, Lavenu F (1999) Comparisons of the TOMS aerosol index with sun photometer aerosol optical thickness: results and applications. J Geophys Res 104:6269–6279CrossRefGoogle Scholar
  28. Hsu NC, Tsay S-C, King MD, Herman JR (2004) Aerosol properties over bright-reflecting source regions. IEEE Trans Geosci Remote Sens 42:557–569CrossRefGoogle Scholar
  29. Hsu NC, Tsay S-C, King MD, Herman JR (2006) Deep blue retrievals of Asian aerosol properties during ace-Asia. IEEE Trans Geosci Remote Sens 44(11):3180–3195CrossRefGoogle Scholar
  30. Israelevich P, Ganor E, Alpert P, Kishcha P, Stupp A (2012) Predominant transport paths of Saharan dust over the Mediterranean Sea to Europe. J Geophys Res 117:D02205Google Scholar
  31. Kahn RA, Chen Y, Nelson DL, Leung F-Y, Li Q, Diner DJ, Logan JA (2008) Wildfire smoke injection heights: two perspectives from space. Geophys Res Lett 35:L04809. doi:10.1029/2007GL032165 CrossRefGoogle Scholar
  32. Kahn R, Petzold A, Wendisch M, Bierwirth E, Dinter T, Esselborn M, Fiebig M, Heese B, Knippertz P, Muller D, Schladitz A, Von Hoyningen-Huene W (2009) Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging. Tellus B 61:239–251CrossRefGoogle Scholar
  33. Kahn RA, Gaitley BJ, Garay MJ, Diner DJ, Eck TF, Smirnov A, Holben BN (2010) Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J Geophys Res 115:D23209. doi:10.1029/2010JD014601 CrossRefGoogle Scholar
  34. Kalashnikova OV, Kahn R, Sokolik IN, Li W-H (2005) Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: Part 1. Optical models and retrievals of optically thick plumes. J Geophys Res 110:D18S14. doi:10.1029/2004JD004550 Google Scholar
  35. Kambezidis HD, Kaskaoutis DG (2008) Aerosol climatology over four AERONET sites: an overview. Atmos Environ 42:1892–1906CrossRefGoogle Scholar
  36. Karimi N, Moridnejad A, Golian S, Samani JMV, Karimi D, Javadi S (2012) Comparison of dust source identification techniques over land in the Middle East region using MODIS data. Can J Rem Sens 38:586–599CrossRefGoogle Scholar
  37. Kaskaoutis DG, Nastos PT, Kosmopoulos PG, Kambezidis HD, Kharol SK, Badarinath KVS (2010) The Aura-OMI Aerosol Index distribution over Greece. Atmos Res 98:28–39CrossRefGoogle Scholar
  38. Kaskaoutis DG, Kharol SK, Sinha PR, Singh RP, Badarinath KVS, Mehdi W, Sharma M (2011) Contrasting aerosol trends over South Asia during the last decade based on MODIS observations. Atmos Meas Tech Discuss 4:5275–5323CrossRefGoogle Scholar
  39. Kaskaoutis DG, Gautam R, Singh P, Houssos E, Goto D, Singh S, Bartzokas A, Kosmopoulos PG, Sharma M, Hsu N, Holben BN (2012) Influence of anomalous dry conditions on aerosols over India: transport, distribution and properties. J Geophys Res 117:D09106. doi:10.1029/2011JD017314 Google Scholar
  40. Kaufman YJ, Tanré D, Remer L, Vermote EF, Chu A, Holben BN (1997) Operational remote sensing of tropospheric aerosol over the land from EOS-MODIS. J Geophys Res 102:17,051–17068CrossRefGoogle Scholar
  41. Kim D, Chin M, Yu H, Eck TF, Sinyuk A, Smirnov A, Holben BN (2011) Dust optical properties over North Africa and Arabian Peninsula derived from the AERONET dataset. Atmos Chem Phys Discuss 11:20181–20201CrossRefGoogle Scholar
  42. Kishcha P, Starobinets B, Long CN, Alpert P (2012) Unexpected increasing AOT trends over north-west Bay of Bengal in the early post-monsoon season. J Geophys Res 117:D23. doi:10.1029/2012JD018726 Google Scholar
  43. Kiss P, Janosi IM, Torres O (2007) Early calibration problems detected in TOMS Earth-Probe aerosol signal. Geophys Res Lett 34:L07803. doi:10.1029/2006GL028108 CrossRefGoogle Scholar
  44. Lemaître C, Flamant C, Cuesta J, Raut J-C, Chazette P, Formenti P, Pelon J (2010) Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa. Atmos Chem Phys 10:8131–8150. doi:10.5194/acp-10-8131 CrossRefGoogle Scholar
  45. Levy RC, Remer LA, Dubovik O (2007) Global aerosol optical properties and application to Moderate Resolution Imaging spectroradiometer aerosol retrieval over land. J Geophys Res 112:D13210. doi:10.1029/2006JD007815 CrossRefGoogle Scholar
  46. Liu Z, Liu D, Huang J (2008) Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos Chem Phys Discuss 8:5957–5977Google Scholar
  47. Maghrabi A, Alharbi B, Tapper N (2011) Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity. Atmos Environ 45:2164–2173CrossRefGoogle Scholar
  48. Marey HS, Gille JC, El-Askary HM, Shalaby EA, El-Raey ME (2011) Aerosol climatology over Nile Delta based on MODIS, MISR and OMI satellite data. Atmos Chem Phys 11:10637–10648CrossRefGoogle Scholar
  49. Middleton NJ (1986) Dust storms in the Middle East. J Arid Environ 10:83–96Google Scholar
  50. Miri A, Ahmadi H, Ghanbari A, Moghaddamnia A (2007) Dust storms impacts on air pollution and public health under hot and dry climate. Int J Energy Environ 2:1Google Scholar
  51. Mishchenko MI et al (2009) Toward unified satellite climatology of aerosol properties: what do fully compatible MODIS and MISR aerosol pixels tell us? J Quant Spectrosc Radiat Transfer 110:402–408CrossRefGoogle Scholar
  52. Moghadamnia A, Ghafari MB, Piri J, Amin S, Han D (2009) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Resour 32:88–97CrossRefGoogle Scholar
  53. Nastos PT, Paliatsos AG, Anthracopoulos MB, Roma ES, Priftis KN (2010) Outdoor particulate matter and childhood asthma admissions in Athens, Greece: a time-series study. Environ Health 9(45):1–9Google Scholar
  54. Patadia F, Yang E-S, Christopher SA (2009) Does dust change the clear sky top of atmosphere shortwave flux over high surface reflectance regions? Geophys Res Lett 36:L15825. doi:10.1029/2009GL039092 CrossRefGoogle Scholar
  55. Prasad AK, Yang K-HS, El-Askary HM, Kafatos M (2009) Melting of major glaciers in the western Himalayas: evidence of climatic changes from long term MSU derived tropospheric temperature trend (1979–2008). Ann Geophys 27:4505–4519CrossRefGoogle Scholar
  56. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer absorbing aerosol product. Rev Geophys 40:2–31Google Scholar
  57. Rashki A, Kaskaoutis DG, de W. Rautenbach CJ, Eriksson PG, Giang M, Gupta P (2012) Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeolian Res 5:51–62CrossRefGoogle Scholar
  58. Rashki A, de W. Rautenbach CJ, Eriksson PG, Kaskaoutis DG, Gupta P (2013a) Temporal changes of particulate concentration in the ambient air over the city of Zahedan, Iran. Air Qual Atmos Health. doi:10.1007/s11869-011-0152-5 Google Scholar
  59. Rashki A, Eriksson PG, de W. Rautenbach CJ, Kaskaoutis DG, Grote W, Dykstra J (2013b) Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region, Iran. Chemosphere 90:227–236CrossRefGoogle Scholar
  60. Rashki A, Kaskaoutis DG, Goudie AS, Kahn RA (2013c) Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drainage basin, southeastern Iran. Sci Total Environ 463–464:552–564CrossRefGoogle Scholar
  61. Remer LA et al (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973CrossRefGoogle Scholar
  62. Rosenfeld D, Rudich Y, Lahav R (2001) Desert dust suppressing precipitation: a possible desertification feedback loop. Proc Natl Acad Sci USA 98(11):5975–5980. doi:10.1073/pnas.101122798 CrossRefGoogle Scholar
  63. Samoli E, Kougea E, Kassomenos P, Analitis A, Katsouyanni K (2011) Does the presence of desert dust modify the effect of PM10 on mortality in Athens, Greece? Sci Total Environ 409:2049–2054CrossRefGoogle Scholar
  64. Satheesh SK, Krishna Moorthy K (2005) Radiative effects of natural aerosols: a review. Atmos Environ 35:2089–2110CrossRefGoogle Scholar
  65. Sharifikia M (2013) Environmental challenges and drought hazard assessment of Hamoun Desert Lake in Sistan region, Iran, based on the time series of satellite imagery. Nat Hazards 65:201–217CrossRefGoogle Scholar
  66. Sharma AR, Kharol SK, Badarinath KVS, Singh D (2010) Impact of agriculture crop residue burning on atmospheric aerosol loading—a study over Punjab State, India. Ann Geophys 28:367–379CrossRefGoogle Scholar
  67. Singh RP, Prasad AK, Kayetha VK, Kafatos M (2008) Enhancement of oceanic parameters associated with dust storms using satellite data. J Geophys Res 113:C11008. doi:10.1029/2008JC004815 CrossRefGoogle Scholar
  68. Smirnov A, Holben BN, Dubovic O, O’Neill NT, Eck TF, Westphal DL, Goroth AK, Pietras C, Slutsker I (2002) Atmospheric aerosol optical properties in the Persian Gulf. J Atmos Sci 59:620–634CrossRefGoogle Scholar
  69. Tanré D, Kaufman YJ, Herman M, Mattoo S (1997) Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J Geophys Res 102:16,971–16988CrossRefGoogle Scholar
  70. Torres O, Bhartia PK, Herman JR, Ahmad Z, Gleason J (1998) Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis. J Geophys Res 103:17099–17110CrossRefGoogle Scholar
  71. Torres O, Bhartia PK, Herman JR, Sinyuk A, Ginoux P, Holben B (2002) A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J Atmos Sci 59:398–413CrossRefGoogle Scholar
  72. United Nations Environment Programmme (UNEP) (2006) History of environmental change in the Sistan Basin - based on satellite image analysis: 1976–2005. Geneva, (UNEP) Post-Conflict Branch, Switzerland. Retrieved 20 July 2007
  73. Valenzuela A, Olmo FJ, Lyamani H, Antón M, Quirantes A, Alados-Arboledas L (2012) Aerosol radiative forcing during African desert dust events (2005–2010) over South-Eastern Spain. Atmos Chem Phys Discuss 12:6593–6622CrossRefGoogle Scholar
  74. von Yoon J, Hoyningen-Huene W, Vountas M, Burrows JP (2011) Analysis of linear long-term trend of aerosol optical thickness derived from SeaWiFS using BAER over Europe and South China. Atmos Chem Phys 11:12149–12167CrossRefGoogle Scholar
  75. Washington R, Todd M, Middleton NJ, Goudie AS (2003) Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann As Am Geogr 93(2):297–313. doi:10.1111/1467-8306.9302003 CrossRefGoogle Scholar
  76. Zhang J, Reid J, Westphal D, Hyer E, Baker N, Campbell J (2010) Multi-sensor aerosol data assimilation. Aerosol Observability Workship, Monterey, CAGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. Rashki
    • 1
    • 2
  • D. G. Kaskaoutis
    • 3
  • P. G. Eriksson
    • 2
  • C. J. de W. Rautenbach
    • 4
  • C. Flamant
    • 5
  • F. Abdi Vishkaee
    • 5
  1. 1.Department of Geology, Faculty of Natural and Agricultural SciencesUniversity of PretoriaPretoriaSouth Africa
  2. 2.Faculty of Natural Resources and EnvironmentFerdowsi University of MashhadMashhadIran
  3. 3.Department of Physics, School of Natural SciencesShiv Nadar UniversityDadriIndia
  4. 4.Department of Geography, Geoinformatics and Meteorology, Faculty of Natural and Agricultural SciencesUniversity of PretoriaPretoriaSouth Africa
  5. 5.Laboratoire Atmosphères, Mileux, Observations SpatialesCNRS and Université Pierre et Marie CurieParisFrance

Personalised recommendations