Natural Hazards

, Volume 70, Issue 1, pp 415–445 | Cite as

Tsunami inundation in Napier, New Zealand, due to local earthquake sources

  • Stuart A. FraserEmail author
  • William L. Power
  • Xiaoming Wang
  • Laura M. Wallace
  • Christof Mueller
  • David M. Johnston
Original Paper


Deterministic analysis of local tsunami generated by subduction zone earthquakes demonstrates the potential for extensive inundation and building damage in Napier, New Zealand. We present the first high-resolution assessments of tsunami inundation in Napier based on full simulation from tsunami generation to inundation and demonstrate the potential variability of onshore impacts due to local earthquakes. In the most extreme scenario, rupture of the whole Hikurangi subduction margin, maximum onshore flow depth exceeds 8.0 m within 200 m of the shore and exceeds 5.0 m in the city centre, with high potential for major damage to buildings. Inundation due to single-segment or splay fault rupture is relatively limited despite the magnitudes of MW 7.8 and greater. There is approximately 30 min available for evacuation of the inundation zone following a local rupture, and inundation could reach a maximum extent of 4 km. The central city is inundated by up to three waves, and Napier Port could be inundated repeatedly for 12 h. These new data on potential flow depth, arrival time and flow kinematics provide valuable information for tsunami education, exposure analysis and evacuation planning.


Local tsunami Inundation modelling COMCOT Hikurangi subduction margin Structural damage Arrival time Evacuation 



We thank Craig Goodier and Hawke’s Bay Regional Council for the provision of LiDAR data, and Ursula Cochran for early review of the paper. We sincerely thank the three reviewers for providing detailed comments which helped to improve this article. This research was supported by public research funding from the Government of New Zealand. Credits for figures using an Esri ArcGIS basemap layer: GEBCO, NOAA, National Geographic, DeLorme, and Esri (Fig. 1); Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, and the GIS User Community (Figs. 5, 6, 9); World Shaded Relief, copyright ESRI 2009 (Figs. 4, 7).

Supplementary material

11069_2013_820_MOESM1_ESM.txt (1 mb)
Supplementary material 1 (TXT 1,024 kb)
11069_2013_820_MOESM2_ESM.txt (2.6 mb)
Supplementary material 2 (TXT 2,624 kb)
11069_2013_820_MOESM3_ESM.txt (2.6 mb)
Supplementary material 3 (TXT 2,657 kb)


  1. Abe K (1975) Reliable estimation of the seismic moment of large earthquakes. J Phys Earth 23:381–390CrossRefGoogle Scholar
  2. Amante C, Eakins BW (2009) ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 p, March 2009.
  3. Ansell JH, Bannister SC (1996) Shallow morphology of the subducted Pacific plate along the Hikurangi margin, New Zealand. Phys Earth Planet In 93:3–20CrossRefGoogle Scholar
  4. Arcement GJ, Schneider VR (1989) Guide for selecting manning’s roughness coefficients for natural channels and flood plains. United States Geological Survey Water-supply Paper 2339, Denver, CO. 38p.
  5. Baptista MA, Miranda JM, Omira R, Antunes C (2011) Potential inundation of Lisbon downtown by a 1755-like tsunami. Nat Hazards Earth Syst Sci 11(12):3319–3326. doi: 10.5194/nhess-11-3319-2011 CrossRefGoogle Scholar
  6. Barker DHN, Sutherland R, Henrys S, Bannister S (2009) Geometry of the Hikurangi subduction thrust and upper plate, North Island, New Zealand. Geochem Geophys Geosyst 10(2). doi:  10.1029/2008GC002153
  7. Barnes PM, Nicol A, Harrison T (2002) Late Cenozoic evolution and earthquake potential of an active listric thrust complex above the Hikurangi subduction zone. New Zealand. Geol Soc Am Bull 114(11):1379–1405CrossRefGoogle Scholar
  8. Bell R, Sutherland R, Barker DHN, Henrys S, Bannister S, Wallace L, Beavan J (2010) Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events. Geophys J Int 180(1):34–48CrossRefGoogle Scholar
  9. Berryman KR (1993) Age, height, and deformation of Holocene marine terraces at Mahia Peninsula, Hikurangi Subduction Marginm, New Zealand. Tectonics 12(6):1347–1364. doi: 10.1029/93TC01542 CrossRefGoogle Scholar
  10. Berryman KR (2005) (compiler) Review of Tsunami Hazard and Risk in New Zealand. Institute of Geological & Nuclear Sciences Limited. Client report 2005/104. Lower Hutt, New Zealand.$file/Final_Hazard_and_Risk_Report-web.pdf
  11. Berryman KR, Ota Y, Hull AG (1989) Holocene paleoseismicity in the fold and thrust belt of the Hikurangi subduction zone, eastern North Island, New Zealand. Tectonophysics 163(3–4):185–195CrossRefGoogle Scholar
  12. Berryman KR, Ota Y, Miyauchi T, Hull AG, Clark K, Ishibashi K, Iso N, Litchfield N (2011) Holocene paleoseismic history of upper-plate faults in the Southern Hikurangi Subduction Margin, New Zealand, deduced from marine terrace records. Bull Seismol Soc Am 101(5):2064–2087CrossRefGoogle Scholar
  13. Chagué-Goff C, Dawson S, Goff JR et al (2002) A tsunami (ca. 6300 years BP) and other Holocene environmental changes, northern Hawke’s Bay, New Zealand. Sediment Geol 150(1–2): 89–102Google Scholar
  14. Cho Y-S (1995) Numerical simulation of tsunami and run-up. Dissertation. Cornell UniversityGoogle Scholar
  15. Clark K, Berryman K, Litchfield N, Cochran UA, Little T (2010) Evaluating the coastal deformation mechanisms of the Raukumara Peninsula, northern Hikurangi subduction margin, New Zealand and insights into forearc uplift processes. N Z J Geol Geophys 53(4):341–358CrossRefGoogle Scholar
  16. Cochran UA, Berryman KR, Mildenhall DC, Hayward BW, Southall K (2005) Towards a record of Holocene tsunami and storms for northern Hawke’s Bay, New Zealand. N Z J Geol Geophys 48(3):507–515CrossRefGoogle Scholar
  17. Cochran UA, Berryman KR, Zachariasen J et al (2006) Paleoecological insights into subduction zone earthquake occurrence, eastern North Island, New Zealand. Geol Soc Am Bull 118(9–10):1051–1074CrossRefGoogle Scholar
  18. Collot J-Y, Lewis KB, Lamarche G, Lallemand SE (2001) The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zealand; results of oblique seamount subduction. J Geophys Res-Solid 106(9):19271–19297CrossRefGoogle Scholar
  19. Cousins WJ (2009) RiskScape–development of a default assets model for Hawke’s Bay. GNS Science Consultancy Report 2009/50. Lower Hutt, New Zealand. 29pGoogle Scholar
  20. De Lange WP, Healy TR (1986) New Zealand tsunamis 1840–1982. N Z J Geol Geophys 29(1):115–134CrossRefGoogle Scholar
  21. Downes GL (2006) The 1904 MS6.8 MW7.0–7.2 Cape Turnagain, New Zealand, earthquake. B New Zealand Soc Earthq Eng 39(4):182–207Google Scholar
  22. Downes GL, Webb T, McSaveney M et al (2000) The 26 March and 17 May 1947 Gisborne earthquakes and tsunami: implications for tsunami hazard for the east coast, North Island, New Zealand. In: Proceedings of the international tsunami workshop tsunami risk assessment beyond 2000: Theory, Practice and Plans, pp 55–67Google Scholar
  23. Fraser RJ (1998) Historical Tsunami Database for New Zealand. Dissertation. Waikato University, HamiltonGoogle Scholar
  24. Gayer G, Leschka S, Nöhren I, Larsen O, Günther H (2010) Tsunami inundation modelling based on detailed roughness maps of densely populated areas. Nat Hazards Earth Syst Sci 10(8):1679–1687. doi: 10.5194/nhess-10-1679-2010 CrossRefGoogle Scholar
  25. Goff JR (2008) Tsunami Hazard Assessment for Hawke’s Bay Region. Christchurch, New Zealand. NIWA Client Report: CHC2008-021. National Institute of Water & Atmospheric Research Ltd, Christchurch, New ZealandGoogle Scholar
  26. Goto K, Chagué-Goff C, Goff JR, Jaffe BE (2012) The future of tsunami research following the 2011 Tohoku-oki event. Sediment Geol 282:1–13. doi: 10.1016/j.sedgeo.2012.08.003 CrossRefGoogle Scholar
  27. Hawke’s Bay CDEM Group (2011) Latest hazard maps inform tsunami preparedness.
  28. Hawke’s Bay Regional Council (2010) Chile tsunami event impacts in Hawke’s Bay February 2010, asset management group technical report.
  29. Hayward BW, Grenfell HR, Sabaa AT et al (2006) Micropaleontological evidence of large earthquakes in the past 7200 years in southern Hawke’s Bay, New Zealand. Quat Sci Rev 25(11–12):1186–1207CrossRefGoogle Scholar
  30. Henrys S, Reyners M, Pecher I, Bannister S, Nishimura Y, Maslen G (2006) Kinking of the subducting slab by escalator normal faulting beneath the North Island of New Zealand. Geology 34:777–780CrossRefGoogle Scholar
  31. Hull AG (1986) Pre-AD 1931 tectonic subsidence of Ahuriri Lagoon, Napier, Hawke’s Bay, New Zealand. N Z J Geol Geophys 29(1):75–82CrossRefGoogle Scholar
  32. Husen S, Kissling E, Quintero R (2002) Tomographic evidence for a subducted seamount beneath the Gulf of Nicoya, Costa Rica: the cause of the 1990 Mw = 7.0 Gulf of Nicoya earthquake. Geophys Res Lett 29(8):74–79. doi: 10.1029/2001GL014045 CrossRefGoogle Scholar
  33. Hutchinson MF (1989) A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J Hydrol 106(3):211–232. doi: 10.1016/0022-1694(89)90073-5 CrossRefGoogle Scholar
  34. IASPEI (2013) Summary of magnitude working group recommendations on standard procedures for determining earthquake magnitudes from digital data.
  35. Ishii M (2011) High-frequency rupture properties of the M w 9.0 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63(7):609–614CrossRefGoogle Scholar
  36. Kaiser G, Scheele L, Kortenhaus A, Løvholt F, Römer H, Leschka S (2011) The influence of land cover roughness on the results of high resolution tsunami inundation modeling. Nat Hazards Earth Syst Sci 11(9):2521–2540. doi: 10.5194/nhess-11-2521-2011 CrossRefGoogle Scholar
  37. Kanamori H (1972) Mechanism of tsunami earthquakes. Phys Earth Planet In 6:346–359CrossRefGoogle Scholar
  38. King AB, Bell R (2009) Riskscape project: 2004–2008. GNS science consultancy report 2008/247. Lower Hutt, New Zealand. 153pGoogle Scholar
  39. King AB, Cousins WJ, Heron DW, Matcham I, Pringle R, Bell R, Reese S, Schmidt J, Henderson R (2008) Regional RiskScape: a multi-hazard loss modelling tool. In: 4th International i-Rec Conference 2008: building resilience: achieving effective post-disaster reconstruction. 2008, Christchurch, New Zealand, p. 11Google Scholar
  40. Kiser E, Ishii M (2011) The 2010 Mw 8.8 Chile earthquake: Triggering on multiple segments and frequency-dependent rupture behavior. Geophys Res Lett 38(7). doi:  10.1029/2011GL047140
  41. Kotani M, Imamura F, Shuto N (1998) Tsunami runup simulation and damage estimation by using geographical information system. Proc Coast Eng 45: 356–360 (in Japanese).
  42. Land Information New Zealand (2006). Nautical Chart NZ561–Approaches to Napier.
  43. Lay T, Kanamori H, Ammon CJ et al (2005) The great Sumatra-Andaman earthquake of 26 December 2004. Science 308(5725):1127–1133. doi: 10.1126/science.1112250 CrossRefGoogle Scholar
  44. Lewis KB, Collot J-Y, Lallemand SE (1998) The dammed Hikurangi Trough: a channel-fed trench blocked by subducting seamounts and their wake avalanches (New Zealand-France GeodyNZ Project). Basin Res 10(4):441–468CrossRefGoogle Scholar
  45. Liu PLF, Cho Y-S, Briggs MJ, Kanoglu U, Synolakis CE (1995a) Runup of solitary waves on a circular island. J Fluid Mech 302:259–285CrossRefGoogle Scholar
  46. Liu PLF, Cho Y-S, Yoon SB, Seo SN (1995b) Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In: Tsuchiya Y, Shuto N (eds) Tsunami: progress in prediction, disaster prevention, and warning. Kluwer Academic Publishers, Netherlands, pp 99–115CrossRefGoogle Scholar
  47. Liu PLF, Woo SB, Cho Y-S (1998) Computer programs for tsunami propagation and inundation. Cornell University, Ithaca, p 60Google Scholar
  48. Maercklin N, Festa G, Colombelli S, Zollo A (2012) Twin ruptures grew to build up the giant 2011 Tohoku, Japan, earthquake. Scientific Reports 2. doi: 10.1038/srep00709
  49. Mas E, Koshimura S, Suppasri A, Matsuoka M, Matsuyama M, Yoshii T, Jimenez C, Yamazaki F, Imamura F (2012) Developing Tsunami fragility curves using remote sensing and survey data of the 2010 Chilean Tsunami in Dichato. Nat Hazards Earth Syst Sci 12(8):2689–2697. doi: 10.5194/nhess-12-2689-2012 CrossRefGoogle Scholar
  50. MCDEM (2010). Tsunami Advisory and Warning Plan. Supporting Plan [SP01/09] Revised May 2012. Ministry of Civil Defence and Emergency Management Wellington, New Zealand. pp 64Google Scholar
  51. Ministry for the Environment (2009). New Zealand Land Cover Database version 2.
  52. Ministry of Land Infrastructure Transport and Tourism (2012) For summary of the tsunami-affected urban reconstruction technique research study from the Great East Japan Earthquake.
  53. Minoura K, Imamura F, Sugawara D, Kono Y, Iwashita T (2001) The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan. J Nat Disaster Sci 23(2):83–88Google Scholar
  54. Muhari A, Imamura F, Koshimura S, Post J (2011) Examination of three practical run-up models for assessing tsunami impact on highly populated areas. Nat Hazards Earth Syst Sci 11(12):3107–3123. doi: 10.5194/nhess-11-3107-2011 CrossRefGoogle Scholar
  55. Myers EP, Baptista AM (2001) Analysis of Factors Influencing Simulations of the 1993 Hokkaido Nansei-Oki and 1964 Alaska Tsunamis. Nat Hazards 23:1–28CrossRefGoogle Scholar
  56. Nakasu T, Takeuchi K, Tanaka S, Yoneyama K, Fujiwara N, Morita T, Sagara J (2011) Meta and longitudinal analyses of high death rates of some particular municipalities in GEJET. IRDR conference 2011 disaster risk: integrating science and practice, Beijing, China.
  57. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154Google Scholar
  58. Page MJ, Trustrum NA (1997) A late Holocene lake sediment record of the erosion response to landuse change in a steepland catchment, New Zealand. Z Geomorphol 41:369–392Google Scholar
  59. Pedley KL, Barnes PM, Pettinga JR, Lewis KB (2010) Seafloor structural geomorphic evolution of the accretionary frontal wedge in response to seamount subduction, Poverty Indentation, New Zealand. Mar Geol 270(1):119–138CrossRefGoogle Scholar
  60. Pelayo AM, Wiens DA (1992) Tsunami earthquakes: slow thrust-faulting events in the accretionary wedge. J Geophys Res-Solid Ea 97(11):15321–15337CrossRefGoogle Scholar
  61. Port of Napier Limited (2012) Napier port annual report 2012. Napier, New ZealandGoogle Scholar
  62. Power WL, Reyners M, Wallace LM (2008) Tsunami hazard posed by earthquakes on the Hikurangi subduction zone interface. GNS Science, Science Report 2008/40 Lower Hutt, New ZealandGoogle Scholar
  63. Power WL, Wallace LM, Wang X, Reyners M (2012a) Tsunami Hazard posed to New Zealand by the Kermadec and Southern New Hebrides subduction margins: an assessment based on plate boundary kinematics, interseismic coupling, and historical seismicity. Pure Appl Geophys 169(1–2):1–36CrossRefGoogle Scholar
  64. Power WL, Wang X, Lane E, Gillibrand P (2012b) A probabilistic tsunami hazard study of the auckland region, part I: propagation modelling and tsunami hazard assessment at the shoreline. Pure Appl Geophys. doi:  10.1007/s00024-012-0543-z
  65. Prasetya G, Beavan J, Wang X, Reyners M, Power WL, Wilson K, Lukovic B (2011) Evaluation of the 15 July 2009 Fiordland, New Zealand Tsunami in the Source Region. Pure Appl Geophys 168(11):1973–1987CrossRefGoogle Scholar
  66. Reyners M (1998) Plate coupling and the hazard of large subduction thrust earthquakes at the Hikurangi subduction zone, New Zealand. New Zeal J Geol Geop 41(4):343–354CrossRefGoogle Scholar
  67. Scholz CH (1998) Earthquakes and friction laws. Nature 391:37–42. doi: 10.1038/34097 CrossRefGoogle Scholar
  68. Scholz CH, Small C (1997) The effect of seamount subduction on seismic coupling. Geology 25(6):487–490CrossRefGoogle Scholar
  69. Shelton R, Beattie G (2011) Timber Framed Buildings and NZS 3604. BRANZ. Judgeford, New Zealand.
  70. Simons M, Minson SE, Sladen A et al (2011) The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the Megathrust from seconds to centuries. Science 332(6036):1421–1425. doi: 10.1126/science.1206731 CrossRefGoogle Scholar
  71. Statistics New Zealand (2012) Territorial authority (TA) by total accommodation: April 2012. accommodation-pivot-tables.aspx
  72. Statistics New Zealand (2013) Estimated resident population, territorial authority areas, at 30 June 2006, 2011, and 2012. Accessed 16 April 2013
  73. Stirling M, McVerry G, Gerstenberger M, Litchfield N, Van Dissen R, Berryman KR, Barnes PM et al (2012) National seismic hazard model for New Zealand: 2010 update. Bull Seismol Soc Am 102(4):1514–1542. doi: 10.1785/0120110170 CrossRefGoogle Scholar
  74. Sugawara D, Goto K, Imamura F, Matsumoto H, Minoura K (2012) Assessing the magnitude of the 869 Jogan tsunami using sedimentary deposits: prediction and consequence of the 2011 Tohoku-oki tsunami. Sediment Geol 282:14–26. doi: 10.1016/j.sedgeo.2012.08.001 CrossRefGoogle Scholar
  75. Sugawara D, Imamura F, Goto K, Matsumoto H, Minoura K (2013) The 2011 Tohoku-oki Earthquake Tsunami: similarities and Differences to the 869 Jogan Tsunami on the Sendai Plain. Pure Appl Geophys 170(5):831–843. doi: 10.1007/s00024-012-0460-1 CrossRefGoogle Scholar
  76. Suppasri A, Imamura F, Koshimura S (2010) Effects of the rupture velocity of fault motion, ocean current and initial sea level on the transoceanic propagation of tsunami. Coast Eng J 52(2):107–132. doi: 10.1142/S0578563410002142 CrossRefGoogle Scholar
  77. Suppasri A, Mas E, Charvet I, Gunasekera R, Imai K, Fukutani Y, Abe Y, Imamura F (2013) Building damage characteristics based on surveyed data and fragility curves of the 2011 Great East Japan tsunami. Nat Hazards 66(2):312–341. doi: 10.1007/s11069-012-0487-8 CrossRefGoogle Scholar
  78. Tanioka Y, Satake K (1996) Fault Parameters of the 1896 Sanriku tsunami earthquake estimated from tsunami numerical modeling. Geophys Res Lett 23(13):1549–1552CrossRefGoogle Scholar
  79. Taylor FW, Briggs RW, Frohlich C et al (2008) Rupture across arc segment and plate boundaries in the 1 April 2007 Solomons earthquake. Nat Geosci 1(4):253–257CrossRefGoogle Scholar
  80. Van der Sande CJ, de Jong SM, de Roo APJ (2003) A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. Int J Appl Earth Obs 4(3):217–229. doi: 10.1016/S0303-2434(03)00003-5 Google Scholar
  81. Wallace LM, Beavan J (2010) Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. J Geophys Res 115:B12402. doi: 10.1029/2010JB007717 CrossRefGoogle Scholar
  82. Wallace LM, Beavan J, McCaffrey R, Darby D (2004) Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J Geophys Res 109:B12406. doi: 10.1029/2004JB003241 CrossRefGoogle Scholar
  83. Wallace LM, Reyners M, Cochran UA et al (2009) Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin, New Zealand. Geochem Geophys Geosyst 10:Q10006. doi: 10.1029/2009GC002610 Google Scholar
  84. Wallace LM, Barnes P, Beavan J et al (2012) The kinematics of a transition from subduction to strike-slip: an example from the central New Zealand plate boundary. J Geophys Res 117:B02405. doi: 10.1029/2011JB008640 Google Scholar
  85. Wang X, Liu PLF (2006) An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. J Hydraul Res 44(2):147–154CrossRefGoogle Scholar
  86. Wang X, Liu PLF (2007) Numerical simulation of the 2004 Indian Ocean tsunami - coastal effects. J Earthq Tsunami 1(3):273–297CrossRefGoogle Scholar
  87. Wang X, Liu PLF (2008) Numerical simulation of tsunami runup onto a three-dimensional beach with shallow water equations. In: Liu PLF, Yeh H, Synolakis CE (eds) Advanced numerical models for simulating tsunami waves and runup. World Scientific Publishing Co. Pte. Ltd. pp 249–253Google Scholar
  88. Wang X, Power WL (2011) COMCOT: a tsunami generation propagation and run-up model. GNS Science, Science Report 2011/43. Lower Hutt, New ZealandGoogle Scholar
  89. Wang X, Prasetya G, Power WL, Lukovic B, Brackley H, Berryman KR (2009) Gisborne District council tsunami inundation study. GNS Science Consultancy Report 2009/233, Lower Hutt, New ZealandGoogle Scholar
  90. Yamanaka Y, Kikuchi M (2004) Asperity map along the subduction zone in Northeastern Japan inferred from regional seismic data. J Geophys Res-Solid 109(B7). doi:  10.1029/2003JB002683

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Stuart A. Fraser
    • 1
    Email author
  • William L. Power
    • 2
  • Xiaoming Wang
    • 2
  • Laura M. Wallace
    • 3
  • Christof Mueller
    • 2
  • David M. Johnston
    • 1
    • 2
  1. 1.Massey UniversityWellingtonNew Zealand
  2. 2.GNS ScienceLower HuttNew Zealand
  3. 3.University of TexasAustinUSA

Personalised recommendations