Natural Hazards

, Volume 66, Issue 2, pp 609–628 | Cite as

Hydrological impact of forest fires and climate change in a Mediterranean basin

  • P.-A. Versini
  • M. Velasco
  • A. Cabello
  • D. Sempere-Torres
Original Paper


Forest fire can modify and accelerate the hydrological response of Mediterranean basins submitted to intense rainfall: during the years following a fire, the effects on the hydrological response may be similar to those produced by the growth of impervious areas. Moreover, climate change and global warming in Mediterranean areas can imply consequences on both flash flood and fire hazards, by amplifying these phenomena. Based on historical events and post-fire experience, a methodology to interpret the impacts of forest fire in terms of rainfall-runoff model parameters has been proposed. It allows to estimate the consequences of forest fire at the watershed scale depending on the considered burned area. In a second stage, the combined effect of forest fire and climate change has been analysed to map the future risk of forest fire and their consequence on flood occurrence. This study has been conducted on the Llobregat river basin (Spain), a catchment of approximately 5,000 km2 frequently affected by flash floods and forest fires. The results show that forest fire can modify the hydrological response at the watershed scale when the burned area is significant. Moreover, it has been shown that climate change may increase the occurrence of both hazards, and hence, more frequent severe flash floods may appear.


Forest fire Climate change Hydrological impacts Risk assessment 



This work has been supported by the European Seventh Framework Programme project IMPRINTS ( that deals with the improvement in preparedness and risk management of flash floods and debris flows. The authors would like to thank the AEMET (Spanish National Meteorological Agency) and the ACA (Catalan Water Agency).


  1. Alexandrian D, Esnault F, Calabri G (1999) Forest fire in the mediterranean area. Unasylva 50(197):35–41Google Scholar
  2. AMC (2000). Glossary of meteorology, 2nd edn. American Meteorological Society, BostonGoogle Scholar
  3. Anderson HW, Hoover MD, Reinhart KG (1976). Forests and water: effects of forest management on floods, sedimentation, and water supply. Forest Service, Pacific Southwest Forest and Range Experiment Station. G. T. R. PSW-018. U.S. Department of Agriculture, Berkeley. 115Google Scholar
  4. Arozarena Villar A, Del Bosque González I, Porcuna Ferández Monasterio A, Villa Alcázar G (2006) Mapa de Ocupación del Suelo en España. Corine Land Cover-Proyecto I&CLC2000, Centro Nacional de Información GeográficaGoogle Scholar
  5. Barrera-Escoda A, Cunillera J (2010) Generació d’escenaris climàtics per a Catalunya durant el segle XXI a partir d’una tècnica dinàmica de regionalització climàtica. 2nd Congrés de Meteorologia i Climatologia de la Mediterrània Occidental, Valencia, SpainGoogle Scholar
  6. Barrera-Escoda A, Cunillera J (2010b) Study of the precipitation evolution in Catalonia using a mesoscale model (1971–2000). Adv Geosci 26:1–6CrossRefGoogle Scholar
  7. Barrera-Escoda A, Cunillera J (2011) Climate change projections for Catalonia (NE Iberian Peninsula). Part I: regional climate modeling. Tethys. J Mediterr Meteorol Climatol 8:75–87Google Scholar
  8. Bergström S (1992) The HBV model—its structure and applications. SMHI Reports RH no. 4. Norrköping, SwedenGoogle Scholar
  9. Bonazountas M, Kallidromitou D, Kassomenos PA, Passas N (2005) Forest fire risk analysis. Hum Ecol Risk Assess 11(3):617–626CrossRefGoogle Scholar
  10. Borga M (2008) Realtime guidance for flash flood risk management. FLOODsite research project report T16-08-02, 86 pGoogle Scholar
  11. Borga M, Boscolo P, Zanon F, Sangati M (2007) Hydrometeorological analysis of the August 29, 2003 flash flood in the eastern Italian Alps. J Hydrometeorol 8(5):1049–1067CrossRefGoogle Scholar
  12. Cabello A, Velasco M, Barredo JI, Hurkmans RTWL, Barrera-Escoda A, Sempere-Torres D, Velasco D (2011) Assessment of future scenarios of climate and land-use changes in the IMPRINTS test-bed areas. Environ Sci Policy 14(7):884–897CrossRefGoogle Scholar
  13. Candela A, Aronica G, Santoro M (2005) Effects of Forest Fires on Flood Frequency Curves in a Mediterranean Catchment. Hydrol Sci J 50(2):193–206CrossRefGoogle Scholar
  14. Castellnou Ribau M, Miralles Bover M, Terrén DM (2005) Analisis de la disponibilidad de combustible: indices meteorológicos críticos para la ocurrencia de cada patrón de grandes incendios forestales en Tivissa. IV Congreso Forestal Español, Zaragoza, 26–30 Septiembre 2005Google Scholar
  15. Chuvieco E, Cocero D, Riaño D, Martin P, Martínez-Vega J, De La Riva J, Pérez F (2004) Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens Environ 92(3):322–331CrossRefGoogle Scholar
  16. Corral C, Sempere-Torres D, Revilla M, Berenguer M (2000) A semi-distributed hydrological model using rainfall estimates by radar. Application to Mediterranean basins. Phys Chem Earth Part B 25(10–12):1133–1136CrossRefGoogle Scholar
  17. Corral C, Berenguer M, Sempere-Torres D, Escaler I (2002) Evaluation of a conceptual distributed rainfall-runoff model in the Besòs catchment in Catalunya using radar information. Second european conference on Radar Meteorology, Delft, Netherlands, European Meteorological SocietyGoogle Scholar
  18. Dankers R, Feyen L (2008) Climate change impact on flood hazard in Europe: an assessment based on high-resolution climate simulations. J Geophys Res 113(D19):D19105CrossRefGoogle Scholar
  19. Debano LF (1981) Water repellent soils: a state-of-the-art. Berkeley, California, Gen. Technical reportGoogle Scholar
  20. DeBano LF (2000) The role of fire and soil heating on water repellency in wildland environments: a review. J Hydrol 231–232:195–206CrossRefGoogle Scholar
  21. DeFries R, Eshleman KN (2004) Land-use change and hydrologic processes: a major focus for the future. Hydrol Process 18(11):2183–2186CrossRefGoogle Scholar
  22. Díaz-Delgado R, Lloret F, Pons X (2004) Spatial patterns of fire occurrence in Catalonia, NE, Spain. Landsc Ecol 19(7):731–745CrossRefGoogle Scholar
  23. Doerr SH, Thomas AD (2000) The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. J Hydrol 231–232:134–147CrossRefGoogle Scholar
  24. Doerr SH, Shakesby RA, Walsh RPD (1998) Spatial variability of soil hydrophobicity in fire-prone eucalyptus and pine forests, Portugal. Soil Sci 163(4):313–324Google Scholar
  25. Drever CR, Drever MC, Messier C, Bergeron Y, Flannigan M (2008) Fire and the relative roles of weather, climate and landscape characteristics in the Great Lakes-St. Lawrence forest of Canada. J Veg Sci 19(1):57–66CrossRefGoogle Scholar
  26. Duband D, Obled C, Rodriguez JY (1993) Unit hydrograph revisited: an alternate iterative approach to UH and effective precipitation identification. J Hydrol 150(1):115–149CrossRefGoogle Scholar
  27. EEA (2007) Land-use scenarios for Europe: qualitative and quantitative analysis on a European scale. I. 1725-2237. Copenhagen, DenmarkGoogle Scholar
  28. Eickhout B, Prins AG (2008) Eururalis 2.0. Technical background and indicator documentation. N. E. A. Agency, WageningenGoogle Scholar
  29. Field RD, Wang Y, Roswintiarti O, Guswanto (2004) A drought-based predictor of recent haze events in western Indonesia. Atmos Environ 38(13):1869–1878CrossRefGoogle Scholar
  30. Giovannini G, Lucchesi S (1997) Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. ETATS-UNIS, Lippincott Williams & Wilkins, HagerstownGoogle Scholar
  31. Girardin M-P, Tardif J, Flannigan MD, Wotton BM, Bergeron Y (2004) Trends and periodicities in the Canadian Drought Code and their relationships with atmospheric circulation for the southern Canadian boreal forest. Can J For Res 34(1):103–119CrossRefGoogle Scholar
  32. Girardin M-P, Tardif J, Flannigan MD, Bergeron Y (2006) Forest fire-conducive drought variability in the Southern Canadian boreal forest and associated climatology inferred from tree rings. Can. Water Resour J 31(4):275–296Google Scholar
  33. Gracia CA, Ibàñez JJ, Vayreda J, Pons X, Terradas J (1997) Un nuevo concepto de inventario forestal. XI World Forestry Congress, AntalyaGoogle Scholar
  34. Hernandez-Leal PA, Arbelo M, Gonzalez-Calvo A (2006) Fire risk assessment using satellite data. Adv Space Res 37(4):741–746CrossRefGoogle Scholar
  35. Hessburg PF, Reynolds KM, Keane RE, James KM, Salter RB (2007) Evaluating wildland fire danger and prioritizing vegetation and fuels treatments. For Ecol Manage 247(1–3):1–17CrossRefGoogle Scholar
  36. Imeson AC, Verstraten JM, van Mulligen EJ, Sevink J (1992) The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. CATENA 19(3–4):345–361CrossRefGoogle Scholar
  37. IPCC (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  38. Jaiswal RK, Mukherjee S, Raju KD, Saxena R (2002) Forest fire risk zone mapping from satellite imagery and GIS. Int J Appl Earth Obs Geoinf 4(1):1–10CrossRefGoogle Scholar
  39. Keane RE, Burgan R, van Wagtendonk J (2001) Mapping wildland fuels for fire management across multiple scales: integrating remote sensing, GIS, and biophysical modeling. Int J Wildland Fire 10(4):301–319CrossRefGoogle Scholar
  40. Lavabre J, Sempere-Torres D, Cernesson F (1993) Changes in the hydrological response of a small Mediterranean basin a year after a wildfire. J Hydrol 142(1–4):273–299CrossRefGoogle Scholar
  41. Lehner B, Döll P, Alcamo J, Henrichs T, Kaspar F (2006) Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Clim Chang 75(3):273–299CrossRefGoogle Scholar
  42. Lenihan JM, Drapek R, Bachelet D, Neilson RP (2003) Climate change effects on vegetation distribution, carbon, and fire in California. Ecol Appl 13(6):1667–1681CrossRefGoogle Scholar
  43. Letey J (2001) Causes and consequences of fire-induced soil water repellency. Hydrol Process 15(15):2867–2875CrossRefGoogle Scholar
  44. Loepfe L, Martinez-Vilalta J, Oliveres J, Piñol J, Lloret F (2010) Feedbacks between fuel reduction and landscape homogenisation determine fire regimes in three Mediterranean areas. For Ecol Manag 259(12):2366–2374CrossRefGoogle Scholar
  45. Marchi L, Borga M, Preciso E, Gaume E (2010) Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J Hydrol 394:118–133CrossRefGoogle Scholar
  46. Mockus V (1957) Use of storm and watersheds characteristics in synthetic hydrograph analysis and application. U.S. Department of Agriculture, WashingtonGoogle Scholar
  47. MOPU (1990) Norma 5.2-IC, drenaje superficial: instrucción de carreteras. Madrid, Ministerio de Obras Públicas y Urbanismo, Dirección General de CarreterasGoogle Scholar
  48. Moreno JM, Vázquez A, Vélez R (1998) Recent history of forest fires in Spain. Large Fires. J. e. Moreno. Backhuys Publishers, Leiden, pp 159–185Google Scholar
  49. Moreno JM, Rodríguez Urbieta I, Zavala G, Martin M (2009) Incendios y cambio climático. Seguridad y medio ambiente 114:32–42Google Scholar
  50. Nakicenovic N, Swart R (2000) Special report on emissions scenarios. Cambridge University Press, New York, NY, USAGoogle Scholar
  51. Nash JE (1969) A course of lecture on parametric or analytical hydrology. L. no 12. University of Toronto, TorontoGoogle Scholar
  52. Nasseri I (1988) Frequency of floods from burned chaparral watershed. Proceeding of the symposium on fire and watershed mnagement. G. T. R. PSW-109. Berkeley, California, USDA (Forest Service)Google Scholar
  53. Neary DG, Ffolliott PF (2005) The water resource: Its importance, characteristics, and general response to fire. In: Neary DG, Ryan KC, DeBano LF (eds) Wildland fire in ecosystems: effects of fire on soil and water. General technical report RMRS-GTR-42. USDA Forest Service: pp 95–106Google Scholar
  54. Nilsson KSB, Nielsen TAS, Pauleit S, Ravetz J, Rounsevell M (2008) Urban development scenarios: experiences from the PLUREL Project. Conference 2008: cities, climatic change and development, The Association of Development Researchers in Denmark pp 19–23Google Scholar
  55. Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20(14):1823–1841CrossRefGoogle Scholar
  56. Núñez-Regueira L, Rodríguez-Añón JA, Proupín-Castiñeiras J (2000) Design of risk index maps as a tool to prevent forest fires in the humid Atlantic zone of Galicia (NW Spain). Thermochim Acta 349:103–119CrossRefGoogle Scholar
  57. Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Climatic Change 38(3):345–357CrossRefGoogle Scholar
  58. Rodriguez JY, Obled C, Sempere-Torres D (1991) Prévision des crues dans les petits bassins versants de montagne : prise en compte de la variabilité spatiale des pluies et des mécanismes de production par l’approche DPFT. Société hydrotechnique de France, ParisGoogle Scholar
  59. Rosso R, Rulli MC, Bocchiola D (2007) Transient catchment hydrology after wildfires in a Mediterranean basin: runoff, sediment and woody debris. Hydrol Earth Syst Sci 11(1):125–140CrossRefGoogle Scholar
  60. Rozalis S, Morin E, Yair Y, Price C (2010) Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. J Hydrol, Corrected Proof (in press)Google Scholar
  61. Rulli MC, Rosso R (2007) Hydrologic response of upland catchments to wildfires. Adv Water Resour 30(10):2072–2086CrossRefGoogle Scholar
  62. Rulli MC, Bozzi S, Spada M, Bocchiola D, Rosso R (2006) Rainfall simulations on a fire disturbed mediterranean area. J Hydrol 327(3–4):323–338CrossRefGoogle Scholar
  63. Salvador R, Valeriano J, Pons X, Diaz-Delgado R (2000) A semi-automatic methodology to detect fire scars in shrubs and evergreen forests with Landsat MSS time series. Int J Remote Sens 21:655–671CrossRefGoogle Scholar
  64. Scott DF (1997) The contrasting effects of wildfire and clearfelling on the hydrology of a small catchment. Wiley , Chichester, UKGoogle Scholar
  65. Scott DF, Van Wyk DB (1990) The effects of wildfire on soil wettability and hydrological behaviour of an afforested catchment. J Hydrol 121(1–4):239–256Google Scholar
  66. Sempere-Torres D (1996) Analisis del impacto hidrologico de los incendios forestales: proposición de una metodologia de diseño hidrologico. Universitat Politècnica de Catalunya, Barcelona 83 pGoogle Scholar
  67. Soto B, Díaz-Fierros F (1998) Runoff and soil erosion from areas of burnt scrub: comparison of experimental results with those predicted by the WEPP model. CATENA 31(4):257–270CrossRefGoogle Scholar
  68. Szymkiewicz R (2002) An alternative IUH for the hydrological lumped models. J Hydrol 259(1–4):246–253CrossRefGoogle Scholar
  69. Turner JA (1972) The drought code component of the Canadian forest fire behavior system. Department of the Environment, Canadian Forestry Service. C. F. S. Department of the Environment, OntarioGoogle Scholar
  70. Van Wagner CE (1987) Development and structure of the Canadian Forest Fire Weather Index System. Forestry technical report 35. C. F. Service, OttawaGoogle Scholar
  71. Versini P-A, Gaume E, Andrieu H (2010) Application of a distributed hydrological model to the design of a road inundation warning system for flash flood prone areas. Nat Hazards Earth Syst Sci 10(4):805–817CrossRefGoogle Scholar
  72. Versini P-A, Berenguer M, Corral C, Sempere-Torres D, Santiago-Gahete A (2011a) A pilot operational flood warning system in Andalusia (Spain): presentation and first results. Hydrol Earth Syst Sci Discuss 8:10425–10463CrossRefGoogle Scholar
  73. Versini P-A, Mc Ennis S, Pouget L, Massana J (2011). Case study: Llobregat basin. Model running and uncertainty analysis. WATERCHANGE project report. Barcelona (Spain): 53Google Scholar
  74. Versini P-A, Velasco D, Coll J, Ballinas R (2011). Definition of the climate scenarios. WATERCHANGE project report. Barcelona (Spain): 53Google Scholar
  75. Wang J, Song W, Zheng H, Telesca L (2010) Temporal scaling behavior of human-caused fires and their connection to relative humidity of the atmosphere. Ecol Model 221(1):85–89CrossRefGoogle Scholar
  76. Weeks WD, Boughton WC (1987) Tests of ARMA model forms for rainfall-runoff modelling. J Hydrol 91(1–2):29–47CrossRefGoogle Scholar
  77. Williams AAJ, Karoly DJ, Tapper N (2001) The sensitivity of australian fire danger to climate change. Clim Chang 49(1):171–191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • P.-A. Versini
    • 1
    • 2
  • M. Velasco
    • 3
  • A. Cabello
    • 3
  • D. Sempere-Torres
    • 2
  1. 1.CSTB/LEESUMarne-la-ValléeFrance
  2. 2.CRAHI-UPCBarcelonaSpain
  3. 3.CETaqua, Water Technology CenterCornellà de LlobregatSpain

Personalised recommendations