Natural Hazards

, Volume 66, Issue 2, pp 389–412 | Cite as

Volcanic ash forecast during the June 2011 Cordón Caulle eruption

  • Estela Collini
  • María Soledad Osores
  • Arnau Folch
  • José G. Viramonte
  • Gustavo Villarosa
  • Graciela Salmuni
Original Paper


We modelled the transport and deposition of ash from the June 2011 eruption from Cordón Caulle volcanic complex, Chile. The modelling strategy, currently under development at the Argentinean Naval Hydrographic Service and National Meteorological Service, couples the weather research and forecasting (WRF/ARW) meteorological model with the FALL3D ash dispersal model. The strategy uses volcanological inputs inferred from satellite imagery, eruption reports and preliminary grain-size data obtained during the first days of the eruption from an Argentinean ash sample collection network. In this sense, the results shown here can be regarded as a quasi-syn-eruptive forecast for the first 16 days of the eruption. Although this article describes the modelling process in the aftermath of the crisis, the strategy was implemented from the beginning of the eruption, and results were made available to the Buenos Aires Volcanic Ash Advisory Centers and other end users. The model predicts ash cloud trajectories, concentration of ash at relevant flight levels, expected deposit thickness and ash accumulation rates at relevant localities. Here, we validate the modelling strategy by comparing results with satellite retrievals and syn-eruptive ground deposit measurements. Results highlight the goodness of the combined WRF/ARW-FALL3D forecasting system and point out the usefulness of coupling both models for short-term forecast of volcanic ash clouds.


Cordón Caulle volcanic complex Meteorological model Ash cloud forecast FALL3D model 



This work has been partially funded by Spanish Research Project ATMOST (CGL2009-10244), the CYTED thematic network CENIZA (410RT0392), and CONICET. AF is grateful to the Ramón y Cajal scientific programme. Simulations have been done at the facilities of the Barcelona Supercomputing Center (BSC-CNS) using the MareNostrum supercomputer. The WRF/ARW-FALL3D modelling system was implemented in a cluster installed at the SMN with funds from the Argentinean project PIDDEF 41/10 which also support partly this research. We thank Diana M. Rodriguez and Silvana K. Bolzi from the HRPT Division (SMN), Claudio Iglesias (Piedra Grande S.A.), Graciela Massaferro (Centro Nacional Patagónico CENPAT–CONICET), Nilda Menegatti (Univ. de la Patagonia San Juan Bosco), Walter Baez (INENCO-CONICET), Rodolfo Ugarte (Yacimientos Petrolíferos Fiscales, YPF), the Nahuel Huapi National Park rangers and Gendarmería from Villa La Angostura that made the Argentinean ash network work, providing the samples for grain-size analyses Dr. Eduardo Gómez (Instituto Argentino de Oceanografía, IADO-CONICET) for grain-size data, and Adrián Moyano for his advice on Mapuche language. Finally, we also thank Ma. Noel Serra, Valeria Outes, Débora Beigt and Ma. Andrea Dzendoletas (INIBIOMA, Universidad Nacional del Comahue). We thank to Comisión de Actividades Espaciales (CONAE) for the COSMO –SKYmed images. The comments from two anonymous referees improved the early version of this manuscript.


  1. Bentley MJ (1997) Relative and radiocarbon chronology of two former glaciers in the Chilean Lake District. J Quat Sci 12:25–33CrossRefGoogle Scholar
  2. Bursik M (2001) Effect of wind on the rise height of volcanic plumes. Geophys Res Lett 18:3621–3624CrossRefGoogle Scholar
  3. Byun D, Ching J (1999) Science algorithms of the EPA Models-3 community multiscale air quality modeling system. EPA/600/R-99/030. US Environmental Protection Agency, Office of Research and Development, Washington, DCGoogle Scholar
  4. Cahill T, Isacks B (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97:17503–17529CrossRefGoogle Scholar
  5. Campos A, Moreno H, Muñoz J, Antinao J, Clayton J, Martin M (1998) Área de Futrono-Lago Ranco, Región de los Lagos, Servicio Nacional de Geología y Minería, Mapas Geológicos No.8, 1 mapa escala 1:100.000. Santiago de ChileGoogle Scholar
  6. Carazzo G, Kaminski E, Tait S (2008) On the dynamics of volcanic columns: a comparison of field data with new model of negatively buoyant jets. J Volcanol Geotherm Res 178:94–103CrossRefGoogle Scholar
  7. Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe–Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259:55–66CrossRefGoogle Scholar
  8. Chapron E, Ariztegui D, Mulsow S, Villarosa G, Pino M, Outes V, Juvignié E, Crivelli E (2006) Impact of 1960 major subduction earthquake in Northern Patagonia (Chile, Argentina). Quat Int 158:58–71CrossRefGoogle Scholar
  9. Costa A, Macedonio G, Folch A (2006) A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet Sci Lett 241:634–647CrossRefGoogle Scholar
  10. DeMets C, Gordon R, Argus D, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194CrossRefGoogle Scholar
  11. Denton GH, Heusser CJ, Lowell TV, Moreno PI, Andersen BG, Heusser LE, Schluchter C, Marchant DR (1999) Interhemispheric linkage of paleoclimate during the last glaciation. Geogr Ann 81:107–153CrossRefGoogle Scholar
  12. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a meso scale two-dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  13. Ellrod GP, Connell BH, Hillger DW (2003) Improved detection of airborne volcanic ash using multi-spectral infrared satellite data. J Geophys Res 108:4356CrossRefGoogle Scholar
  14. Folch A, Jorba O, Viramonte JG (2008) Volcanic ash forecast—application to the May 2008 Chaitén eruption. Natl Hazards Earth Syst Sci 8:927–940CrossRefGoogle Scholar
  15. Folch A, Costa A, Macedonio G (2009) FALL3D: a computational model for volcanic ash transport and deposition. Comput Geosci 35(6):1334–1342CrossRefGoogle Scholar
  16. Folch A, Osores MS, Pujol G, Collini E, Suaya M (2011) Evaluation of the FALL3D model using WRF–ARW fields for the 2008 Chaitén eruption. European Geosciences Union General Assembly 2011 (EGU 2011)Google Scholar
  17. Ganser G (1993) A rational approach to drag prediction of spherical and non spherical particles. Powder Technol 77:143–152CrossRefGoogle Scholar
  18. Gerlach D, Frey F, Moreno H, López L (1988) Recent volcanism in the Puyehue–Cordón Caulle region, Southern Andes, Chile (40.5°S): petrogenesis of evolved lavas. J Petrol 29:333–382CrossRefGoogle Scholar
  19. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489CrossRefGoogle Scholar
  20. Iglesias C, Lobos M, Lago J (2011) Lluvia de cenizas volcánicas en el área valle inferior del río Chubut. Internal Report from Piedra Grande SAGoogle Scholar
  21. Kanamori H, Cipar JJ (1974) Focal process of the great Chilean earthquake, May 22, 1960. Phys Earth Planet Inter 9:128–136CrossRefGoogle Scholar
  22. Kidder SQ, VonderHaar TH (1995) Satellite meteorology: an introduction. Academic Press, NYGoogle Scholar
  23. Lara LE, Moreno H (2006) Geología del Complejo Volcánico Puyehue–Cordón Caulle, X Región de Los Lagos, Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 1 mapa escala 1:50.000Google Scholar
  24. Lara LE, Rodríguez C, Moreno H, Pérez de Arce C (2001) Geocronología K-Ar y geoquímica del volcanismo plioceno superior-pleistoceno de los Andes del Sur (39°–42°S). Rev Geol Chile 28:67–90CrossRefGoogle Scholar
  25. Lara LE, Mathews S, Pérez C, Moreno H (2003) Evolución morfoestructural del Complejo Volcánico Cordón Caulle (40°S): evidencias geocronológicas 40Ar–39Ar. In Proceedings of the 10th Congreso Geológico Chileno, Concepción, Electronic FilesGoogle Scholar
  26. Lara LE, Naranjo JA, Moreno H (2004) Rhyodacitic fissure eruption in Southern Andes (Cordón Caulle; 40.5°S) after the 1960 (Mw: 9.5) Chilean earthquake: a structural interpretation. J Volcanol Geotherm Res 138:127–138CrossRefGoogle Scholar
  27. Lara LE, Lavenu A, Cembrano J, Rodríguez C (2006a) Structural controls of volcanism in transversal chains: resheared faults and neotectonics in Cordón Caulle–Puyehue area (40.5°S), Southern Andes. J Volcanol Geotherm Res 158:70–86CrossRefGoogle Scholar
  28. Lara LE, Moreno H, Naranjo JA, Matthews S, Pérez de Arce C (2006b) Magmatic evolution of the Puyehue–Cordón Caulle volcanic complex (40°S), Southern Andean Volcanic Zone: from shield to unusual rhyolitic fissure volcanism. J Volcanol Geotherm Res 157:343–366CrossRefGoogle Scholar
  29. Lavenu A, Cembrano J (1999) Compressional and transpressional stress pattern for Pliocene and Quaternary brittle deformation in fore arc and intra-arc zones (Andes of Central and Southern Chile). J Struct Geol 21:1669–1691CrossRefGoogle Scholar
  30. Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lamere J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks: a classification and glossary of terms, recommendations of the international union of geological sciences, subcommission of the systematics of igneous rocks. Cambridge University Press, ISBN 0-521-66215-XGoogle Scholar
  31. Lowell TV, Heusser CJ, Andersen BG, Moreno PI, Hauser A, Heusser LE, Schluchter C, Marchant DR, Denton G (1995) Interhemispheric correlation of late Pleistocene glacial events. Science 269:1541–1549CrossRefGoogle Scholar
  32. Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186:10–21CrossRefGoogle Scholar
  33. Michalakes J, Dudhia J, Gill D, Henderson T, Klemp J, Skamarock W, Wang W (2005) The weather research and forecasting model: software architecture and performance. In: Zwiefhofer W, Mozdzynski G (eds) Proceedings of the eleventh ECMWF workshop on the use of high performance computing in meteorology, World ScientificGoogle Scholar
  34. Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682CrossRefGoogle Scholar
  35. Moreno H (1977) Geología del área volcánica Puyehue-Carrán en los Andes del sur de Chile, (unpublished thesis). Universidad de Chile, SantiagoGoogle Scholar
  36. Moreno H, Petit-Breuilh ME (1999) El volcán fisural Cordón Caulle, Andes del Sur (40.5°S): geología general y comportamiento eruptivo histórico. 14th Congreso Geológico Argentino, Actas (vol 2) Salta, Argentina, pp 258–260Google Scholar
  37. Osores MS, Pujol G, Collini E, Folch A (2011) Análisis de la dispersión de ceniza volcánica en la atmósfera modelada por el FALL3D para la erupción del volcán Hudson en 1991. Publicación en las actas de la Conferencia Geográfica Regional 2011 (UGI), Santiago de ChileGoogle Scholar
  38. Prata AJ (1989) Observations of volcanic ash clouds in the 10–12 μm window using AVHRR/2 data. Int J Remote Sens 10(4–5):751–761CrossRefGoogle Scholar
  39. Rose WI, Mayberry GC (2000) Use of GOES thermal infrared imagery for eruption scale measurements, Soufriere Hills, Montserrat. Geophys Res Lett 27:3097–3100CrossRefGoogle Scholar
  40. Singer B, Jicha BR, Harper MA, Naranjo JA, Lara LE, Moreno-Roa H (2008) Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordón Caulle volcanic complex, Chile. GSA Bull 120(5/6):599–618. doi: 10.1130/B26276.1; 12 figures; 3 tables; Data Repository item 2008026Google Scholar
  41. Tamaki K (2000) Nuvel 1-A calculation results. Ocean Research Institute. University of Tokio.
  42. Tassara A, Yáñez G (2003) Relación entre el espesor elástico de la litósfera y la segmentación tectónica del margen andino (15–47°S). Rev Geol Chile 30:159–186CrossRefGoogle Scholar
  43. Villarosa G (2008) Tefrocronología Postglacial de la región de Nahuel Huapi, Patagonia, Argentina. PhD Thesis, UnpublishedGoogle Scholar
  44. Villarosa G, Outes V (2008) Rutina de toma de muestras de tefra: Procedimientos para colectar muestras de ceniza. INIBIOMA (CONICET-Universidad Nacional del Comahue) Booklet, 6 ppGoogle Scholar
  45. Villarosa G, Outes V, Hajduk A, Montero EC, Selles D, Fernandez M, Crivelli E (2006) Explosive volcanism during the Holocene in the Upper Limay River Basin: the effects of ashfalls on human societies, Northern Patagonia, Argentina. Quat Int 158:44–57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Estela Collini
    • 1
  • María Soledad Osores
    • 1
  • Arnau Folch
    • 2
  • José G. Viramonte
    • 3
  • Gustavo Villarosa
    • 4
  • Graciela Salmuni
    • 5
  1. 1.Servicio de Hidrografía Naval (SHN) and Servicio Meteorológico Nacional (SMN)Buenos AiresArgentina
  2. 2.CASE DepartmentBarcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS)BarcelonaSpain
  4. 4.INIBIOMA, CRUB (CONICET-Universidad Nacional del Comahue)BarilocheArgentina
  5. 5.CONAEBuenos AiresArgentina

Personalised recommendations