Natural Hazards

, Volume 65, Issue 3, pp 1967–1979 | Cite as

Modeling of coastal erosion and sediment deposition during the 2004 Indian Ocean tsunami in Lhok Nga, Sumatra, Indonesia

  • Budianto Ontowirjo
  • Raphaël ParisEmail author
  • Akira Mano
Original Paper


This study presents the results of numerical simulations of the 2004 Indian Ocean earthquake and tsunami in the Bay of Lhok Nga (northwestern coast of Sumatra, Indonesia) integrating sediment erosion and deposition. We investigate the transport of sediment both by suspension and by bedload under different scenarii of long breaking dispersive waves through a series of numerical experiments. The earthquake source model used by Koshimura et al. (Coast Eng J 51:243–273, 2008) with a 25-m dislocation better reproduces the wave travel time, flow depth and inundation area than the other models tested. The model reproduces realistically the pronounced coastal retreat in the northern part of Lhok Nga Bay (retreat ranging between 50 and 150 m), where Paris et al. (Geomorphology 104:59–72, 2009) estimated a mean retreat of 80 m. There is also a good agreement between the simulated area of coastal retreat (195,400 m2) and the field observations (203,200 m2). The simulation may underestimate the volume of tsunami deposits (611,700 m3 vs. 500,000–1,000,000 m3 estimated by Paris et al. (2009). The model fully reproduces the observed thickness of tsunami deposits when considering both bedload and suspension, even if bedload transport dominates. Limitations are due to micro-scale topographic, anthropic features (which are not always represented by the DEM) and the amount of debris which may influence flow dynamics and sediment transport.


Tsunami Dispersive wave Sediment transport Indian Ocean tsunami 



This work was funded by French ANR (Agence Nationale de la Recherche) program Risknat—project Maremoti (2008–2012) whose leader is Hélène Hébert (CEA-DASE). The authors are particularly grateful to two anonymous reviewers for their relevant comments. This is Laboratory of Excellence ClerVolc contribution n° 39.


  1. Ammon CJ, Ji C, Thio HK, Robinson D, Ni S, Hjorleifsdottir V, Kanamori H, Lay T, Das S, Helmberger D, Ichinose G, Polet J, Wald D (2005) Rupture process of the 2004 Sumatra–Andaman earthquake. Science 308:1133–1139CrossRefGoogle Scholar
  2. Apotsos A, Gelfenbaum G, Jaffe B (2011) Wave characteristics and morphologic effects on the onshore hydrodynamic response of tsunamis. Coast Eng 58:1034–1048CrossRefGoogle Scholar
  3. Chlieh M, Avouac J, Hjorleifsdottir V, Song TA, Ji C, Sieh K, Sladen A, Hébert H, Prawirodirdjo L, Bock Y, Galetzka J (2007) Coseismic slip and afterslip of the great Mw 9.15 Sumatra-Andaman earthquake of 2004. Bull Seismol Soc Am 97:S152–S173CrossRefGoogle Scholar
  4. Choi BH, Hong SJ, Pelinovsky E (2006) Distribution of runup heights of the December 26, 2004 tsunami in the Indian Ocean. Geophys Res Lett 33(13):L13601CrossRefGoogle Scholar
  5. Choowong M, Murakoshi N, Hisada K, Charoentitirat T, Charusiri P, Phantuwongraj S, Wongkok P, Choowong A, Subsayjun R, Chutakositkanon V, Jankaew K, Kanjanapayont P (2008) Flow conditions of the 2004 Indian Ocean tsunami in Thailand, inferred from capping bedforms and sedimentary structures. Terra Nova 20:141–149CrossRefGoogle Scholar
  6. Fagherazzi S, Du X (2008) Tsunamigenic incisions produced by the December 2004 earthquake along the coasts of Thailand, Indonesia and Sri Lanka. Geomorphology 99:120–129CrossRefGoogle Scholar
  7. Feldens P, Schwarzer K, Szczucinski W, Stattegger K, Sakuna D, Somgpongchaiykul P (2009) Impact of the 2004 Indian Ocean tsunami on seafloor morphology and sediments offshore Pakarang Cape, Thailand. Pol J Environ Stud 18(1):63–68Google Scholar
  8. Gelfenbaum G, Jaffe B (2003) Erosion and sedimentation from the 17 July, 1998 Papua New Guinea tsunami. Pure Appl Geophys 160:1969–1999CrossRefGoogle Scholar
  9. Grilli ST, Ioualalan M, Asavanant J, Shi F, Kirby J, Watts P (2007) Source constraints and model simulation of the December 26, 2004, Indian Ocean tsunami. J Waterw Port Coast Ocean Eng 133:414–429CrossRefGoogle Scholar
  10. Ioualalen M (2009) Sensitivity tests on relations between tsunami signal and seismic rupture characteristics: the 26 December 2004 Indian Ocean event case study. Environ Model Softw 24(12):1354–1362CrossRefGoogle Scholar
  11. Jaffe B, Gelfenbaum G (2007) A simple model for calculating tsunami flow speed from tsunami deposits. Sediment Geol 200:347–361CrossRefGoogle Scholar
  12. Jaffe B, Buckley M, Richmond B, Strotz L, Etienne S, Clark K, Watt S, Gelfenbaum G, Goff J (2011) Flow speed estimated by inverse modeling of sandy sediment deposited by the 29 September 2009 tsunami near Satitoa, east Upolu, Samoa. Earth Sci Rev 107:23–37CrossRefGoogle Scholar
  13. Koshimura S, Oie T, Yanagisawa H, Imamura F (2008) Developing fragility functions for tsunami damage estimation using numerical model and post-tsunami data from Banda Aceh, Indonesia. Coast Eng J 51(3):243–273CrossRefGoogle Scholar
  14. Kowalik Z, Knight W, Logan T, Whitmore P (2007) The tsunami of 26 December, 2004: numerical modeling and energy considerations. Pure Appl Geophys 164:379–393CrossRefGoogle Scholar
  15. Larson M, Wamsley TV (2007) A formula for longshore sediment transport in the swash. Proceedings Coast Sed’07, ASCE, New Orleans: 1924–1937Google Scholar
  16. Lavigne F, Paris R, Wassmer P, Gomez C, Brunstein D, Grancher D, Vautier F, Sartohadi J, Setiawan A, Gunawan T, Waluyo B, Fachrizal, Mardiatno D, Widagdo A, Cahyadi R, Lespinasse N, Mahieu L (2006) Learning from a major disaster (Banda Aceh, December 26th, 2004): a methodology to calibrate simulation codes for tsunami inundation models. Zeitschrift für Geomorphol Suppl Band 146:253–265Google Scholar
  17. Lavigne F, Paris R, Grancher D, Wassmer P, Brunstein D, Vautier F, Leone F, Flohic F, De Coster B, Gunawan T, Gomez Ch, Setiawan A, Cahyadi R, Fachrizal (2009) Reconstruction of tsunami inland propagation on December 26, 2004 in Banda Aceh, Indonesia, through field investigations. Pure Appl Geophys 166:259–281CrossRefGoogle Scholar
  18. Liu PL-F, Woo SB, Cho YS (1998) Computer programs for tsunami propagation and inundation. Technical report, Cornell UniversityGoogle Scholar
  19. Maeno F, Imamura F (2007) Numerical investigations of tsunamis generated by pyroclastic flows from the Kikai caldera, Japan. Geophys Res Lett 34:L23303CrossRefGoogle Scholar
  20. Moore A, Nishimura Y, Gelfenbaum G, Kamataki T, Triyono R (2006) Sedimentary deposits of the 26 December 2004 tsunami on the northwest coast of Aceh, Indonesia. Earth Planet Space 58:253–258Google Scholar
  21. Moore A, McAdoo B, Ruffman A (2007) Landward fining from multiple sources in sand sheet deposited by the 1929 grand banks tsunami, Newfoundland. Sediment Geol 200(3–4):336–346CrossRefGoogle Scholar
  22. Morton RA, Goff JR, Nichol SL (2008) Hydrodynamic implications of textural trends in sand deposits of the 2004 tsunami in Sri Lanka. Sediment Geol 207(1–4):56–64CrossRefGoogle Scholar
  23. Nam PT, Larson M, Hanson H, Hoan LX (2009) A numerical model of nearshore waves, currents, and sediment transport. Coast Eng 56:1084–1096CrossRefGoogle Scholar
  24. Nanayama F, Shigeno K (2006) Inflow and outflow facies from the 1993 tsunami in southwest Hokkaido. Sediment Geol 187:139–158CrossRefGoogle Scholar
  25. Nandasena NAK, Paris R, Tanaka N (2011) Numerical assessment of boulder transport by 2004 Indian Ocean tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia). Comput Geosci 37:1391–1399CrossRefGoogle Scholar
  26. Noda A, Katayama H, Sagayama T, Suga K, Uchida Y, Satake K, Abe K, Okamura Y (2007) Evaluation of tsunami impacts on shallow marine sediments: an example from the tsunami caused by the 2003 Tokachi-oki earthquake, Northern Japan. Sediment Geol 200:314–327CrossRefGoogle Scholar
  27. Nwogu O (1993) An alternative form of the Boussinesq equations for nearshore wave propagation. J Waterw Port Coast Ocean Eng 199:618–638CrossRefGoogle Scholar
  28. Paris R, Lavigne F, Wassmer P, Sartohadi J (2007) Coastal sedimentation associated with the December 26, 2004 in Lhok Nga, west Banda Aceh (Sumatra, Indonesia). Mar Geol 238:93–106CrossRefGoogle Scholar
  29. Paris R, Wassmer P, Sartohadi J, Lavigne F, Barthomeuf B, Desgages É, Grancher D, Baumert Ph, Vautier F, Brunstein D, Gomez Ch (2009) Tsunamis as geomorphic crisis: lessons from the December 26, 2004 tsunami in Lhok Nga, west Banda Aceh (Sumatra, Indonesia). Geomorphology 104:59–72CrossRefGoogle Scholar
  30. Paris R, Fournier J, Poizot E, Etienne S, Morin J, Lavigne F, Wassmer P (2010a) Boulder and fine sediment transport and deposition by the 2004 tsunami in Lhok Nga (western Banda Aceh, Sumatra, Indonesia): a coupled offshore—onshore model. Mar Geol 268:43–54CrossRefGoogle Scholar
  31. Paris R, Cachao M, Fournier J, Voldoire O (2010b) Nannoliths abundance and distribution in tsunami deposits: example from the December 26, 2004 tsunami Lhok Nga (northwest Sumatra, Indonesia). Géomorphol Relief Process Environ 2010(1):109–118Google Scholar
  32. Prasetya G, Borrero J, de Lange W, Black K, Healy T (2011) Modeling of inundation dynamics on Banda Aceh, Indonesia during the great Sumatra tsunamis December 26, 2004. Nat Hazards 58:1029–1055CrossRefGoogle Scholar
  33. Prasetya G, Black K, de Lange W, Borrero J, Healy T (2012) Debris dispersal modeling for the great Sumatra tsunamis on Banda Aceh and surrounding waters. Nat Hazards 60:1167–1188CrossRefGoogle Scholar
  34. Pritchard D, Dickinson L (2008) Modelling the sedimentary signature of long waves on coasts: implications for tsunami reconstruction. Sed Geol 206:42–57CrossRefGoogle Scholar
  35. Rabinovich AB, Thomson RE (2007) The 26 December 2004 Sumatra Tsunami: analysis of tide gauge data from the World Ocean part 1 Indian Ocean and South Africa. Pure Appl Geophys 164:261–308CrossRefGoogle Scholar
  36. Ribberink JS (1998) Bed-load transport for steady flows and unsteady oscillatory flows. Coast Eng 34:59–82CrossRefGoogle Scholar
  37. Smith DE, Foster IDL, Long D, Shi S (2007) Reconstructing the pattern and depth of flow onshore in a paleotsunami from associated deposits. Sediment Geol 200(3–4):362–371CrossRefGoogle Scholar
  38. Soulsby RL, Smith DE, Ruffman A (2007) Reconstructing tsunami run-up from sedimentary characteristics––a simple mathematical model. Sixth International Symposium on Coastal Processes––coastal sediments’07 coasts, Oceans, Ports and River Institute (COPRI) of the American Society of Civil Engineers, May 13–17, New Orleans, Louisiana Vol. 2, pp 1075–1088Google Scholar
  39. Spiske M, Weiss R, Bahlburg H, Roskosch J, Amijaya H (2010) The TsuSedMod inversion model applied to the deposits of the 2004 Sumatra and 2006 Java tsunami and implications for estimating flow parameters of palaeo-tsunami. Sediment Geol 224:29–37CrossRefGoogle Scholar
  40. Subarya C, Chlieh M, Prawirodirdjo L, Avouac J-P, Bock Y, Sieh K, Meltzner AJ, Natawidjaja DH, McCaffrey R (2006) Plate boundary deformation associated with the great Sumatra—Andaman earthquake. Nature 440:46–51CrossRefGoogle Scholar
  41. Szczuciński W (2012) The post-depositional changes of the onshore 2004 tsunami deposits on the Andaman Sea coast of Thailand. Nat Hazards 60:115–133CrossRefGoogle Scholar
  42. Tanioka Y, Kasusose T, Kathiroli S, Nishimura Y, Iwasaki S, Satake K (2006) Rupture process of the 2004 great Sumatra—Andaman earthquake estimated from tsunami waveforms. Earth Planet Space 58:203–209Google Scholar
  43. Uchida JI, Fujiwara O, Hasegawa S, Kamataki T (2010) Sources and depositional processes of tsunami deposits: analysis using foraminiferal tests and hydrodynamic verification. Island Arc 19:427–442CrossRefGoogle Scholar
  44. Umitsu M, Tanavud C, Patanakanog B (2007) Effects of landforms on tsunami flow in the plains of Banda Aceh, Indonesia, and Nam Khem, Thailand. Mar Geol 242:141–153CrossRefGoogle Scholar
  45. van Rijn LC (1984) Sediment transport Part II: suspended load transport. J Hydraul Eng 110(11):1613–1641CrossRefGoogle Scholar
  46. Vigny C, Simons WJF, Abu S, Bamphenyu R, Satirapod C, Choosakul N, Subarya C, Socquet A, Omar K, Abidin HZ, Ambrosius BAC (2005) Insight into the 2004 Sumatra—Andaman earthquake from GPS measurements in southeast Asia. Nature 436:201–206CrossRefGoogle Scholar
  47. Weiss R (2008) Sediment grains moved by passing tsunami waves: tsunami deposits in deep water. Mar Geol 250(3–4):251–257CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Budianto Ontowirjo
    • 1
    • 2
  • Raphaël Paris
    • 1
    • 3
    Email author
  • Akira Mano
    • 4
  1. 1.Clermont UniversitéUniversité Blaise PascalClermont-FerrandFrance
  2. 2.CNRS, UMR 6042, GEOLABClermont-FerrandFrance
  3. 3.CNRS, UMR 6524Clermont-FerrandFrance
  4. 4.IRIDeS, International Research Institute of Natural DisasterTohoku UniversitySendaiJapan

Personalised recommendations