Natural Hazards

, Volume 64, Issue 2, pp 1925–1958 | Cite as

Challenges of analyzing multi-hazard risk: a review

  • Melanie S. KappesEmail author
  • Margreth Keiler
  • Kirsten von Elverfeldt
  • Thomas Glade
Review Article


Many areas of the world are prone to several natural hazards, and effective risk reduction is only possible if all relevant threats are considered and analyzed. However, in contrast to single-hazard analyses, the examination of multiple hazards poses a range of additional challenges due to the differing characteristics of processes. This refers to the assessment of the hazard level, as well as to the vulnerability toward distinct processes, and to the arising risk level. As comparability of the single-hazard results is strongly needed, an equivalent approach has to be chosen that allows to estimate the overall hazard and consequent risk level as well as to rank threats. In addition, the visualization of a range of natural hazards or risks is a challenging task since the high quantity of information has to be depicted in a way that allows for easy and clear interpretation. The aim of this contribution is to give an outline of the challenges each step of a multi-hazard (risk) analysis poses and to present current studies and approaches that face these difficulties.


Multi-hazard risk Hazard Vulnerability Risk Hazard cascades Hazard chains 



The authors are grateful to the European Commission for funding the Marie Curie Research Training Network “Mountain Risks” (, contract MCRTN03598) within which this review has be written. The authors also want to thank several persons who contributed to discussions, critics, and explanations: Cees van Westen, Stefan Greiving, Bernard Loup, Stephan Wohlwend, and Ronald Pöppl. We would also like to thank four anonymous reviewers for their constructive and helpful comments on earlier drafts of the paper.


  1. Alexander D (2001) Natural hazards. In: Alexander D, Fairbridge R (eds) Encyclopedia of environmental science. Kluwer, Dordrecht, pp 421–425Google Scholar
  2. Altenbach T (1995) A comparison of risk assessment techniques from qualitative to quantitative. In: ASME pressure and piping conference, Honolulu, HawaiiGoogle Scholar
  3. Ancey C, Gervasoni C, Meunier M (2004) Computing extreme avalanches. Cold Reg Sci Technol 39:161–180CrossRefGoogle Scholar
  4. Autonome Provinz Bozen Südtirol (2012), access 29 January 2012
  5. Baker M, Little A, Hilson J (1997) Multi hazard: identification and risk assessment—the cornerstone of the national mitigation strategy. Tech. rep., FEMA,, available at:
  6. Bartel P, Muller J (2007) Horn of Africa natural hazard probability and risk analysis. Tech. rep, USAIDGoogle Scholar
  7. Bell R (2002) Landslide and snow avalanche risk analysis—methodology and its application in Bíldur. Rheinische Friedrich-Wilhelms-Universität Bonn, NW-Iceland. Master’s thesisGoogle Scholar
  8. Bell R, Glade T (2004) Multi-hazard analysis in natural risk assessments. International Conference on Computer Simulation in Risk Analysis and Hazard Mitigation, Brebbia, C.A., Rhodes, Greece, In, pp 197–206Google Scholar
  9. Bernal G (2010) CAPRA: Multi-hazard approach,, access 10 June 2011, conference presentation in the Understanding Risk Forum
  10. Besson L, Durville JL, Garry G, Graszk E, Hubert T, Toulement M (1999) Plans de prévention des risques naturels (PPR)—risques de mouvements de terrain: guide méthodologique. Tech. rep., Ministère de l’aménagement du territoire et de l’environnement & Ministère de l’équipement, des transports et du logementGoogle Scholar
  11. BGR, Desdm (2009) Guidebook for assessing the risks to natural hazards—case study: Province of Central Java. Tech. rep, Bundesanstalt für Geowissenschaften und Rohstoffe and the Geological Agency of IndonesiaGoogle Scholar
  12. Bommer J, Rodríguez C (2002) Earthquake-induced landslides in Central America. Eng Geol 63:189–220CrossRefGoogle Scholar
  13. Borter P (1999) Risikoanalyse bei gravitativen Naturgefahren—Methode. Umwelt-Materialien 107/I, Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern, SwitzerlandGoogle Scholar
  14. Borter P, Bart R (1999) Risikoanalyse bei gravitativen Naturgefahren—Fallbeispiele und Daten. Umwelt-Materialien 107/II, Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern, SwitzerlandGoogle Scholar
  15. Bovolo CI, Abele SJ, Bathurst JC, Caballero D, Ciglan M, Eftichidis G, Simo B (2009) A distributed framework for multi-risk assessment of natural hazards used to model the effects of forest fire on hydrology and sediment yield. Comput Geosi 35(5):924–945CrossRefGoogle Scholar
  16. Bründl M (2008) Risikokonzept für Naturgefahren—Leitfaden. Tech. rep., Nationale Plattform für Naturgefahren PLANAT, Bern,, access 24 January 2009
  17. Bründl M, Bartelt P, Schweizer J, Keiler M, Glade T (2010) Snow avalanche risk analysis—review and future challenges. In: Alcántara-Ayala I, Goudie A (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 49–61CrossRefGoogle Scholar
  18. Büchele B, Kreibich H, Kron A, Thieken A, Ihringer J, Oberle P, Merz B, Nestmann F (2006) Flood-risk mapping: contributions towards and enhanced assessment of extreme events and associated risks. Nat Hazard Earth Syst 6:485–503CrossRefGoogle Scholar
  19. Calvi G, Pinho R, Magenes G, Bommer J, Restrepo-Vélez L, Crowley H (2006) Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J Earthq Technol 43:75–104Google Scholar
  20. Cannon S, deGraff J (2009) The increasing wildfire and post-fire debris-flow threat in western USA, and implications for consequences of climate change. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 177–190CrossRefGoogle Scholar
  21. Cariam (2006) Plans de prévention des risques naturels prévisibles (PPR)—cahier de recommandations sur le contenu des PPR. Tech. rep., Ministère de l’Écologie et du Développement durableGoogle Scholar
  22. Carpignano A, Golia E, Di Mauro C, Bouchon S, Nordvik JP (2009) A methodological approach for the definition of multi-risk maps at regional level: first application. J Risk Res 12:513–534CrossRefGoogle Scholar
  23. Carrasco R, Pedraza J, Martin-Duque J, Mattera M, Sanz M, Bodoque J (2003) Hazard zoning for landslides connected to torrential floods in the Jerte Valley (Spain) by using GIS techniques. Nat Hazards 30:361–381CrossRefGoogle Scholar
  24. CEPREDENAC, ISDR, IDB, the World Bank (2011) CAPRA Portal (Central American Probabilistic Risk Assessment)., access 2 July 2011
  25. Chang KT, Chiang SH, Hsu ML (2007) Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology 89:335–347CrossRefGoogle Scholar
  26. Chiesa C, Laben C, Cicone R (2003) An Asia Pacific natural hazards and vulnerabilities atlas. In: 30th international symposium on remote sensing of environmentGoogle Scholar
  27. Christen M, Bartelt P, Gruber U (2007) Modelling avalanches. GEO connexion International Magazine pp 38–39Google Scholar
  28. CRED (2009) EM-DAT: Emergency Events Database., access 15 July 2009
  29. Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87CrossRefGoogle Scholar
  30. Delattre A, Garancher T, Rozencwajg C, Touret T (2002) Jurisque—prévention des risques naturels. Tech. Rep. 3, Ministere de l’Écologie et du Développement durableGoogle Scholar
  31. Delmonaco G, Margottini C, Spizzichino D (2006) ARMONIA methodology for multi-risk assessment and the harmonisation of different natural risk maps. Deliverable 3.1.1, ARMONIAGoogle Scholar
  32. Delmonaco G, Margottini C, Spizzichino D (2006) Report on new methodology for multi-risk assessment and the harmonisation of different natural risk maps. Deliverable 3.1, ARMONIAGoogle Scholar
  33. dePippo T, Donadio C, Pennetta M, Petrosino C, Terlizzi F, Valente A (2008) Costal hazard assessment and mapping in Northern Campania, Italy. Geomorphology 97:451–466CrossRefGoogle Scholar
  34. DHS (2011) Integrated Rapid Visual Screening of buildings. Tech. report, Department of Homeland Security., access 18th March 2012
  35. Dilley M, Chen U RS Deichmann, Lerner-Lam A, Arnold M (2005) Natural disaster hotspots: a global risk analysis. In: Disaster Risk Management Series, 5, The World BankGoogle Scholar
  36. DIN (2009) ISO/IEC 31010: Risk management—risk assessment techniques. Tech. rep., Deutsches Institut für Normung e.V.,, access 31st August 2011
  37. Douglas J (2007) Physical vulnerability modelling in natural hazard risk assessment. Nat Hazard Earth Syst 7:283–288CrossRefGoogle Scholar
  38. Egli T (1996) Hochwasserschutz und Raumplanung. Schutz vor Naturgefahren mit Instrumenten der Raumplanung—dargestellt am Beispiel von Hochwasser und Murgängen. vdf Hochschulverlag AG, ETH Zürich, oRL-Bericht 100Google Scholar
  39. El Morjani Z, Ebner S, Boos J, Abdel Ghaffar E, Musani A (2007) Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO Atlas of Disaster Risk as a step towards the reduction of the health impact related to disasters. Int J Health Geogr 6:1–28Google Scholar
  40. Erlingsson U (2005) GIS for natural hazard mitigation—experiences from designing the HazMit GIS expert system suggests the need for an international standard. In: GIS Planet, PortugalGoogle Scholar
  41. European Commission (2011) Risk assessment and mapping guidelines for disaster management. Commission staff working paper, European UnionGoogle Scholar
  42. Ewen J, Parkin G, O’Connell PE (2000) SHETRAN: distributed river basin flow and transport modeling system. J Hydrol Eng 5:250–258CrossRefGoogle Scholar
  43. Fell R, Ho K, Lacasse S, Leroi E (2005) A framework for landslide risk assessment. In: Proceedings of the International Conference on Landslide Risk Management, Vancouver, Canada, pp 3–25Google Scholar
  44. FEMA (1995) National mitigation strategy: Partnerships for building safer communities. Tech. rep., Federal Agency Management Agency, Washington, USAGoogle Scholar
  45. FEMA (2009) U.S. Department of Homeland Security: FEMA., access 19 August 2009
  46. FEMA (2010) HAZUS-MH analysis levels. Department of Homeland Security, Federal Emergency Management Agency., access 4 July 2012
  47. FEMA (2011a) Getting started with HAZUS-MH 2.1. Tech. rep. U.S. Department of Homeland Security, Federal Emergency Management Agency, access 2 July 2012
  48. FEMA (2011b) Multi-hazard loss estimation methodology: flood model. HAZUS-MH. Technical manual, U.S. Department of Homeland Security, Federal Emergency Management AgencyGoogle Scholar
  49. FEMA (2011c) Multi-hazard loss estimation methodology: hurricane model. HAZUS-MH 2.1. Technical manual, U.S. Department of Homeland Security, Federal Emergency Management AgencyGoogle Scholar
  50. FEMA (2011d) Multi-hazard loss estimation methodology: earthquake model. HAZUS-MH 2.1—Technical Manual. U.S. Department of Homeland Security, Federal Emergency Management AgencyGoogle Scholar
  51. Foerster E, Krien Y, Dandoulaki M, Priest S, Tapsell S, Delmonaco G, Margottini C, Bonadonna C (2009) Methodologies to assess vulnerability of structural systems. Del. 1.1.1., ENSURE,, access 24 March 2011
  52. Fuchs S, Keiler M, Zischg A (2001) Risikoanalyse—Oberes Suldental, Vinschgau: Konzepte und Methoden zur Erstellung eines Naturgefahrenhinweis-Informationssystems. Innsbrucker Geographische StudienGoogle Scholar
  53. Garcin M, Prame B, Attanayake N, de Silva U, Desprats J, Fernando S, Fontaine M, Idier D, Lenotre N, Pedreros R, Siriwardana C (2007) A geographic information system for coastal hazards—application to a pilot site in Sri Lanka. Final report BRGM/RP-55553-FR, Bureau de recherches géologiques et minières (BRGM)Google Scholar
  54. Garcin M, Desprats J, Fontaine M, Pedreros R, Attanayake N, Fernando S, Siriwardana C, de Silva U, Poisson B (2008) Integrated approach for coastal hazards and risks in Sri Lanka. Nat Hazard Earth Syst 8:577–586CrossRefGoogle Scholar
  55. Garry G, Graszk E, Dupuy JL (1997) Plans de prévention des risques naturels prévisibles (PPR): Guide général. Tech. rep., Ministère de l’Écologie et du Développement durable,, access 8 July 2009
  56. GFDRR (2010) Reducing vulnerability to natural hazards., access 15 July 2010
  57. Glade T (2003) Vulnerability assessment in landslide risk analysis. Erde 2:123–146Google Scholar
  58. Glade T, Crozier M (2004) A review of scale dependency in landslide hazard and risk analysisGoogle Scholar
  59. GNS, NIWA (2010) RiskScape—user manual., access 8 December 2010
  60. Granger K, Jones T, Leiba M, Scott G (1999) Community risk in Cairns: a multi-hazards risk assessment. Tech. rep., Australian Geological Survey Organisation (AGSO),, access 19 Febuary 2009
  61. Greiving S (2006) Integrated risk assessment of multi-hazards: a new methodology. In: Schmidt-Thomé P (ed) Natural and technological hazards and risks affecting the spatial development of european regions, geological survey of Finland, vol 42, pp 75–81Google Scholar
  62. Greiving S, Fleischhauer M, Lückenkötter J (2006) A methodology for an integrated risk assessment of spatially relevant hazards. J Environ Planning Manage 49(1):1–19CrossRefGoogle Scholar
  63. Grünthal G, Thieken A, Schwarz J, Radtke K, Smolka A, Merz B (2006) Comparative risk assessment for the city of cologne—storms, floods, earthquakes. Nat Hazards 38(1–2):21–44CrossRefGoogle Scholar
  64. Harp E, Wilson R (1995) Shaking intensity thresholds for rock falls and slides: evidence from 1987 whittier narrows and superstition hills earthquake strong-motion records. Bull Seismol Soc Am 85:1739–1757Google Scholar
  65. Heinimann H, Hollenstein K, Kienholz H, Krummenacher B, Mani P (1998) Methoden zur Analyse und Bewertung von Naturgefahren. Umwelt-Materialien Nr. 85, Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern, SwitzerlandGoogle Scholar
  66. Helmer O (1966) The use of the Delphi Technique in problems of educational innovations. Tech. Rep. P-3499, The Rand Corporation,, access 3 September 2010
  67. Hewitt K, Burton I (1971) Hazardousness of a place: a regional ecology of damaging events. Toronto Press, TorontoGoogle Scholar
  68. Hufschmidt G, Glade T (2010) Vulnerability analysis in geomorphic risk assessment. In: Alcántara-Ayala I, Goudie A (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 233–243CrossRefGoogle Scholar
  69. Huggel C, Kääb A, Salzmann N (2004) GIS-based modeling of glacial hazards and their interactions using Landsat-TM and IKONOS imagery. Nor J Geogr 58:61–73CrossRefGoogle Scholar
  70. Hunter N, Bates P, Horritt M, Wilson M (2007) Simple spatially-distributed models for predicting flood inundation: a review. Geomorphology 90:208–225CrossRefGoogle Scholar
  71. Kappes M (2011) Multi-hazard risk analyses: a concept and its implementation. PhD thesis, University of ViennaGoogle Scholar
  72. Kappes M, Keiler M, Glade T (2010) From single- to multi-hazard risk analyses: a concept addressing emerging challenges. In: Malet JP, Glade T, Casagli N (eds) Mountain risks: bringing science to society. Proceedings of the international conference, florence, CERG Editions, Strasbourg, pp 351–356Google Scholar
  73. Kappes M, Papathoma-Köhle M, Keiler M (2011) Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl Geogr 32:577–590CrossRefGoogle Scholar
  74. Keefer D (2002) Investigating landslides caused by earthquakes—a historical review. Surv Geophys 23:473–510CrossRefGoogle Scholar
  75. Keylock C, Barbolini M (2001) Snow avalanche impact pressure—vulnerability relations for use in risk assessment. Can Geotech J 38(2):227–238CrossRefGoogle Scholar
  76. Klein J, Greiving S, Jarva J (2006) Integrated natural risk legend and standard for harmonised risk maps for land use planning and management. Deliverable 3.2, ARMONIA,, access 30 January 2009
  77. Kunz M, Hurni L (2008) Hazard maps in Switzerland: state-of-the-art and potential improvements. In: Proceedings of the 6th ICA Mountain Cartography Workshop, Lenk, SwitzerlandGoogle Scholar
  78. Lateltin O (1997) Berücksichtigung der Massenbewegungsgefahren bei raumwirksamen Tätigkeiten. Tech. rep., Bundesamt für Raumplanung (BRP), Bundesamt für Wasserwirtschaft (BWW), Bundesamt für Umwelt, Wald und Landschaft (BUWAL)Google Scholar
  79. Lee K, Rosowsky D (2006) Fragility analysis of woodframe buildings considering combined snow and earthquake loading. Struct Saf 28:289–303CrossRefGoogle Scholar
  80. Lee CT, Huang CC, Lee JF, Pan KL, Lin ML, Dong JJ (2008) Statistical approach to earthquake-induced landslide susceptibility. Eng Geol 100:43–58CrossRefGoogle Scholar
  81. Liévois J (2003) Guide méthodologique plans de prévention des risques d’avalanches. Tech. rep., Ministère de l’Écologie et du Développement et de l’AménagementGoogle Scholar
  82. Lin CW, Liu SH, Lee SY, Liu CC (2006) Impacts of the Chi–Chi earthquake on subsequent rainfall-induced landslides in Central Taiwan. Eng Geol 86:87–101CrossRefGoogle Scholar
  83. Loat R (2010) Risk management of natural hazards in Switzerland. Tech. rep., Federal Office for the Environment FOEN,, access 23 July 2010
  84. Loat R, Petrascheck A (1997) Berücksichtigung der Hochwassergefahren bei raumwirksamen Tätigkeiten. Empfehlungen 1997, Bundesamt für Wasserwirtschaft (BWW), Bundesamt für Raumplanung (BRP) and Bundesamt für Umwelt, Wald und Landschaft (BUWAL)Google Scholar
  85. Luino F (2005) Sequence of instability processes triggered by heavy rainfall in the northern Italy. Geomorphology 66:13–39CrossRefGoogle Scholar
  86. Marzocchi W, Mastellone M, Di Ruocco A (2009) Principles of multi-risk assessment: interactions amongst natural and man-induced risks. Tech. rep., European Commission,, access 19 July 2009
  87. Marzocchi W, Garcia-Aristizabal A, Gasparini P, Mastellone M, Di Ruocco A, Novelli P (2012) Basic principles of multi-risk assessment: a case study in Italy. Nat Hazards 62:551–573CrossRefGoogle Scholar
  88. MEDD (1999) Guide méthodologique plans de prévention des risques d’inondations. Tech. rep., Ministère de l’Écologie et du Développement durable,, access 25 November 2009
  89. MEDD (2002) Guide méthodologique plans de prévention des risques sismique. Tech. rep., Ministère de l’Écologie et du Développement durable,, access 25 November 2009
  90. MEDD (2003) Plans de prévention des risques naturels (ppr)—risques d’inondations. Tech. rep., Ministère de l’Écologie et du Développement durableGoogle Scholar
  91. Menoni S (2006) Integration of harmonized risk maps with spatial planning decision processes. Deliverable 5.1, ARMONIAGoogle Scholar
  92. Meyenfeld H (2008) Modellierung seismisch ausgelöster gravitativer Massenbewegungen für die Schwäbische Alb und den Raum Bonn und Erstellen von Gefahrenhinweiskarten. PhD thesis, University of ViennaGoogle Scholar
  93. Middelmann M, Granger K (2000) Community risk in Mackay: a multi-hazard risk assessment. Tech. rep., Australian Geological Survey Organisation (AGSO),, access 19 February 2009
  94. Miles S, Keefer D (2009) Evaluation of camel—comprehensive areal model of earthquake-induced landslides. Eng Geol 104:1–15CrossRefGoogle Scholar
  95. Moran A, Wastl M, Geitner C, Stötter J (2004) A regional scale risk analysis in the community of Ólafsfjödur, Iceland. In: Internationales Symposium—INTERPRAEVENT, Riva, TrientGoogle Scholar
  96. Munich Re (1998) Weltkarte der Naturgefahren. Tech. rep., Münchner Rückversicherungs-GesellschaftGoogle Scholar
  97. Munich Re (2000) Topics 2000: natural catastrophes—the current position. Tech. rep.,, access 23 January 2009
  98. Odeh Engineers, Inc (2001) Statewide hazard risk and vulnerability assessment for the state of Rhode Island. Tech. rep., NOAA Coastal Services Center,, access 09 March 2010
  99. Papathoma-Köhle M, Kappes M, Keiler M, Glade T (2011) Physical vulnerability assessment for Alpine hazards—state of the art and future needs. Nat Hazards 58:645–680CrossRefGoogle Scholar
  100. Perles Roselló M, Cantarero Prados F (2010) Problems and challenges in analyzing multiple territorial risks. methodological proposals for multi-hazard mapping. Boletín de la Asociación de Geógrafos Españoles 52:399–404Google Scholar
  101. Porter K, Scawthorn C (2007) OpenRisk: open-source risk software and access for the insurance industry. In: 1st International Conference on Asian Catastrophe Insurance (ICACI), Kyoto University, JapanGoogle Scholar
  102. Puissant A, Malet JP, Maquaire O (2006) Mapping landslide consequences in mountain areas: a tentative approach with a semi-quantitative procedure. In: SAGEO 2006, Strasbourg, FranceGoogle Scholar
  103. Reese S, Bell R, King A (2007a) RiskScape: a new tool for comparing risk from natural hazards. Water Atm 15:24–25Google Scholar
  104. Reese S, King A, Bell R, Schmidt J (2007) Regional RiskScape: a multi-hazard loss modelling tool. In: Oxley L, Kulasiri D (eds) MODSIM 2007 International Congress on Modelling and Simulation, pp 1681–1687Google Scholar
  105. Risk Frontiers (2008) PerilAUS II—relative risk ratings for postcodes and CRESTA/ICA zones. Website link to a PowerPoint presentation,, access 20 August 2008
  106. RMS (2009) Risk management solutions., access 16 November 2009
  107. Schmidt J, Matcham I, Reese S, King A, Bell R, Smart G, Cousins J, Smith W, Heron D (2011) Quantitative multi-risk analysis for natural hazards: a framework for multi-risk modelling. Nat Hazards 58:1169–1192CrossRefGoogle Scholar
  108. Schneider P, Schauer B (2006) Hazus—its development and its future. Nat Hazards Rev 7:40–44CrossRefGoogle Scholar
  109. Schneiderbauer S, Ehrlich D (2006) Social levels and hazard (in)dependence in determining vulnerability. In: Birkmann J (ed) Measuring vulnerability to natural hazards—towards disaster resilient societies. TERI Press, New Delhi, pp 78–102Google Scholar
  110. Sedan O, Mirgon C (2003) Application ARMAGEDOM. Notice utilisateur BRGM/RP-52759-FR, Bureau de recherches géologiques et minières (BRGM)Google Scholar
  111. Shi P (2002) Theory on disaster science and disaster dynamics. J Nat Disasters 11:1–9Google Scholar
  112. SLF (1984) Richtlinien zur Berücksichtigung der Lawinengefahr bei raumwirksamen Tätigkeiten. Tech. rep., Eidgenössisches Institut für Schnee- und Lawinenforschung & Bundesamt für ForstwesenGoogle Scholar
  113. Sperling M, Berger E, Mair V, Bussadori V, Weber F (2007) Richtlinien zur Erstellung der Gefahrenzonenpläne (GZP) und zur Klassifizierung des spezifischen Risikos (KSR). Tech. rep., Autonome Provinz BozenGoogle Scholar
  114. Tarvainen T, Jarva J, Greiving S (2006) Spatial pattern of hazards and hazard interactions in Europe. In: Schmidt-Thomé P (ed) Natural and Technological Hazards and Risks Affecting the Spatial Development of European Regions, vol 42, Geological Survey of Finland, pp 83–91Google Scholar
  115. Thierry H (2003) Les plans de prévention des risques naturels ppr. Tech. rep., Ministere de l’Écologie et du Développement durableGoogle Scholar
  116. Thierry P, Stieltjes L, Kouokam E, Nguéya P, Salley PM (2008) Multi-hazard risk mapping and assessment on an active volcano: the GRINP project at Mount Cameroon. Nat Hazards 45:429–456CrossRefGoogle Scholar
  117. Tufte E (2001) Envisioning information. Graphics Press, CheshireGoogle Scholar
  118. UN (2002) Johannesburg plan of implementation of the world summit on sustainable development. Tech. rep., United Nations,, access 03 September 2009
  119. UNDHA (1992) Internationally agreed glossary of basic terms related to disaster management. Glossary, United Nations Department of Humanitarian AffairsGoogle Scholar
  120. UNEP (1992) Agenda 21. Tech. rep., United Nations Environment Programme,, access 03 September 2009
  121. UN-ISDR (2005) Hyogo framework for action 2005–1015: Building the resilience of nations and communities to disasters. In: World Conference on Disaster Reduction, Kobe, Hyogo, JapanGoogle Scholar
  122. UN-ISDR (2009) Global assessment report on disaster risk reduction. Tech. rep., United Nations—International Strategy for Disaster Reduction,, access 1 September 2009
  123. vanWesten C (2004) Geo-information tools for landslide risk assessment. an overview of recent developments. In: Lacerda W, Erlich M, Fontoura S, Sayao A (eds) Landslides : evaluation and stabilization—glissement de terrain: Evaluation et Stabilisation: proceedings of the 9th international symposium on landslides, Balkema, London, UK, Rio de Janeiro, Brazil, pp 39–56Google Scholar
  124. vanWesten C, Montoya A, Boerboom L, Badilla Coto E (2002) Multi-hazard risk assessment using GIS in urban areas: a case study for the city of Turrialba, Costa Rica. In: Proceedings of the regional workshop on best practices in disaster mitigation: lessons learned from the Asian urban disaster mitigation program and other initiatives, Bali, Indonesia, pp 120–136Google Scholar
  125. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. United Nations Educational, Scientific and Cultural Organisation, ParisGoogle Scholar
  126. Wichmann V, Becht M (2003) Modelling of geomorphic processes in an alpine catchment. In: Martin D (ed) 7th international conference on geo computation. University of Southampton, SouthamptonGoogle Scholar
  127. Wichmann V, Heckmann T, Haas F, Becht M (2009) A new modelling approach to delineate the spatial extent of alpine sediment cascades. Geomorphology 111:70–78CrossRefGoogle Scholar
  128. WMO (1999) Comprehensive risk assessment for natural hazards. Technical document 955, World Meteorological Organisation,, access 05 May 2010
  129. Zezere J, Garcia R, Oliveira S, Reis E (2008) Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology 94:467–495CrossRefGoogle Scholar
  130. Zuccaro G, Leone M (2011) Volcanic crisis management and mitigation strategies: a multi-risk framework case study. Earthzine 4Google Scholar
  131. Zuccaro G, Cacace F, Spence R, Baxter P (2008) Impact of explosive eruption scenarios at Vesuvius. J Volcanol Geoth Res 178:416–453CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Melanie S. Kappes
    • 1
    • 4
    Email author
  • Margreth Keiler
    • 1
    • 2
  • Kirsten von Elverfeldt
    • 1
    • 3
  • Thomas Glade
    • 1
  1. 1.Department of Geography and Regional ResearchUniversity of ViennaViennaAustria
  2. 2.Institute of GeographyUniversity of BernBernSwitzerland
  3. 3.Department of Geography and Regional ScienceKlagenfurt UniversityKlagenfurtAustria
  4. 4.The World BankWashingtonUSA

Personalised recommendations