Natural Hazards

, Volume 64, Issue 1, pp 767–796 | Cite as

A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia

  • Matthias KünzlerEmail author
  • Christian Huggel
  • Juan Manuel Ramírez
Original Paper


The glacier-covered Nevado del Tolima in the Colombian Cordillera Central is an active volcano with potential lahars that might be more hazardous than those on Nevado del Ruiz. Furthermore, rainfall-triggered floods and landslides notoriously and severely affect the region. For effective disaster prevention, a risk analysis is of primary importance. We present here a risk analysis methodology that is based on the assessment of lahar and rainfall-related flood hazard scenarios and different aspects of vulnerability. The methodology is applied for populated centres in the Combeima valley and the regional capital Ibagué (~500,000 inhabitants). Lahar scenarios of 0.5, 1, 5, and 15 million m3 volume are based on melting of 1, 2, 10, and 25 % of ice, firn and snow, respectively, due to volcanic activity and subsequent lahar formation. For flood modelling, design floods with a return period of 10 and 100 years were calculated. Vulnerability is assessed considering physical vulnerability, operationalized by market values of dwelling parcels and population density, whereas social vulnerability is expressed by the age structure of the population and poverty. Standardization of hazard and vulnerability allows for the integration into a risk equation, resulting in five-level risk maps, with additional quantitative estimate of damage. The probability of occurrence of lahars is low, but impacts would be disastrous, with about 20,000 people and more directly exposed to it. Floods are much more recurrent, but affected areas are generally smaller. High-risk zones in Ibagué are found in urban areas close to the main river with high social vulnerability. The methodology has proven to be a suitable tool to provide a first overview of spatial distribution of risk which is considered by local and regional authorities for disaster risk reduction. The harmonization of technical-engineering risk analysis and approaches from social sciences into common reference concepts should be further developed.


Risk analysis Vulnerability Natural hazard Colombia Combeima Nevado del Tolima Lahar Cordillera Central 



We would like to thank the following persons for discussions or other support: Miguel Barrios, Enrique A. Castellanos Abella, Alfonso David Duran, Juan Carlos Delgado, Wilfried Haeberli, Julia Olaya, Bernardo Pulgarín, Wolfgang Ruf, Konrad Schürmann, Demian Schneider, Jean-Claude Thouret, and Massimiliano Zappa. We furthermore highly appreciate the support of the following institutions: Swiss Agency for Development and Cooperation (SDC), Colombian Geology and Mining Institute (INGEOMINAS), Colombian National Institute of Meteorology, Hydrology and Environmental Studies (IDEAM), the Regional (Tolima) and Local (Ibagué) Disaster Preventions Agencies (CREPAD and CLOPAD), the Tolima Regional Corporation (CORTOLIMA), the Red Cross in Ibagué, the Civil Defence, and finally the OASIS programme of SPOT Image. Very careful and detailed comments and suggestions by two reviewers furthermore substantially improved the manuscript.


  1. Aceves-Quesada JF, Díaz-Salgado J, López-Blanco J (2007) Vulnerability assessment in a volcanic risk evaluation in Central Mexico through a multi-criteria-GIS approach. Nat Hazards 40:339–356CrossRefGoogle Scholar
  2. Alcaldía de Ibagué (unpublished) Pastales: Documento Técnico. Departamento Administrativo de Planeación Municipal, p 111Google Scholar
  3. Alcaldía de Ibagué (2003) Anuario Estadístico de Ibagué 2001–2003. Departamento Administrativo de Planeación Municipal, p 366Google Scholar
  4. Alcántara-Ayala I (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 47:107–124CrossRefGoogle Scholar
  5. Armenakis C, Nirupama N (in press) Prioritization of disaster risk in a community using GIS. Nat HazardsGoogle Scholar
  6. Azar D, Rain D (2007) Identifying population vulnerable to hydrological hazards in San Juan, Puerto Rico. GeoJournal 69(1):23–43CrossRefGoogle Scholar
  7. Bara C (2010) Factsheet: social vulnerability to disasters. Center for security studies (CSS), ETH Zurich, p 19Google Scholar
  8. Barnes HH Jr (1967) Roughness characteristics of natural channels. U.S. Geological Survey Water Supply Paper 1849, U.S. Department of the InteriorGoogle Scholar
  9. Barrios Peña MI, Olaya Marín EJ (2007) Evaluación integral del riesgo por avenidas torrenciales caso Villa Restrepo, Ibagué-Tolima, Master thesis, University of TolimaGoogle Scholar
  10. Bell R, Glade T (2004) Quantitative risk analysis for landslides—examples from Bíldudalur, NW-Iceland. Nat Hazards Earth Syst Sci 4:117–131CrossRefGoogle Scholar
  11. Birkmann J, von Teichman K (2010) Integrating disaster risk reduction and climate change adaptation: key challenges—scales, knowledge, and norms. Sustain Sci 5(2):171–184CrossRefGoogle Scholar
  12. Blong R (2003) Building damage in Rabaul, Papua New Guinea, 1994. Bull Volcanol 65:43–54Google Scholar
  13. Brooks N, Neil Adger W, Mick Kelly P (2005) The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob Environ Change Part A 15(2):151–163CrossRefGoogle Scholar
  14. Bründl M, Romang HE, Bischof N, Rheinberger CM (2009) The risk concept and its application in natural hazards risk management in Switzerland. Nat Hazards Earth Syst Sci 9:801–813CrossRefGoogle Scholar
  15. Brunner GW (2002) HEC-RAS, river analysis system, hydraulic reference manual, Hydrologic Engineering Center. US Army Corps of Engineers, DavisGoogle Scholar
  16. Cantagrel J, Robin C, Murcia A, Salinas R, Cepeda H (1995) Quaternary history and hazard-zone model at Nevado del Tolima and Cerro Machin Volcanoes, Colombia. J Volcanol Geotherm Res 66:397–426CrossRefGoogle Scholar
  17. Cardona OD (2006) A system of indicators for disaster risk management in the Americas. In: Birkmann J (ed) Measuring vulnerability to hazards of natural origin: towards disaster resilient societies. United Nations University Press, Tokyo, pp 189–209Google Scholar
  18. Castellanos Abella E, van Westen C (2007) Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides 4:311–325CrossRefGoogle Scholar
  19. Cepeda H, Murcia LA (1988) Mapa preliminar de amenaza volcanica potential del Nevado del Tolima, Colombia, S.A. Informe 2070. INGEOMINAS, Ministerio de Minas y EnergiaGoogle Scholar
  20. Chow VT (1959) Open-channel hydraulics. McGraw-Hill civil engineering series, New YorkGoogle Scholar
  21. CORTOLIMA (2006a) Proyecto plan de ordenación y manejo de la cuenca hidrográfica mayor del Río Coello—Diagnositco socio economico y ambiental—Vereda Juntas, Municipio de Ibagué. CORTOLIMA (Corporación Autónoma Regional del Tolima), CORPOICA (Corporación Colombiana de Investigación Agropecuaria), University of Tolima, SENA (Servicio Nacional de Aprendizaje), Ibagué, p 60Google Scholar
  22. CORTOLIMA (2006b) Proyecto plan de ordenación y manejo de la cuenca hidrográfica mayor del Río Coello—Diagnositco socio economico y ambiental—Vereda Llanitos, Municipio de Ibagué. CORTOLIMA (Corporación Autónoma Regional del Tolima), CORPOICA (Corporación Colombiana de Investigación Agropecuaria), University of Tolima, SENA (Servicio Nacional de Aprendizaje), Ibagué, p 61Google Scholar
  23. CORTOLIMA (2006c) Proyecto plan de ordenación y manejo de la cuenca hidrográfica mayor del Río Coello—Diagnositco socio economico y ambiental—Vereda Pastales, Municipio de Ibagué. CORTOLIMA (Corporación Autónoma Regional del Tolima), CORPOICA (Corporación Colombiana de Investigación Agropecuaria), University of Tolima, SENA (Servicio Nacional de Aprendizaje), Ibagué, p 61Google Scholar
  24. CORTOLIMA (2006d) Proyecto plan de ordenación y manejo de la cuenca hidrográfica mayor del Río Coello—Diagnositco socio economico y ambiental—Vereda Pico de Oro, Municipio de Ibagué. CORTOLIMA (Corporación Autónoma Regional del Tolima), CORPOICA (Corporación Colombiana de Investigación Agropecuaria), University of Tolima, SENA (Servicio Nacional de Aprendizaje), Ibagué, p 60Google Scholar
  25. CORTOLIMA (2006e) Proyecto plan de ordenación y manejo de la cuenca hidrográfica mayor del Río Coello—Diagnositco socio economico y ambiental—Vereda Villa Restrepo, Municipio de Ibagué. CORTOLIMA (Corporación Autónoma Regional del Tolima), CORPOICA (Corporación Colombiana de Investigación Agropecuaria), University of Tolima, SENA (Servicio Nacional de Aprendizaje), Ibagué, p 60Google Scholar
  26. Cox JR, Rosenzweig C, Solecki WD, Goldberg R, Kinney PL (2007) Social vulnerability to climate change: a neighborhood analysis of the Northeast U.S. Megaregion, Union of Concerned Scientists, Cambridge, p 21. Accessed 5 Jan 2012
  27. Cutter SL (1996) Vulnerability to environmental hazards. Prog Hum Geogr 20:529–539CrossRefGoogle Scholar
  28. Cutter SL, Finch C (2008) Temporal and spatial changes in social vulnerability to natural hazards. Proc Natl Acad Sci 105(7):2301–2306CrossRefGoogle Scholar
  29. Cutter SL, Mitchell JT, Scott MS (2000) Revealing the vulnerability of people and places: a case study of Georgetown County, South Carolina. Ann As Am Geogr 90(4):713–737CrossRefGoogle Scholar
  30. Cutter SL, Boruff BJ, Shirley WL (2003) Social vulnerability to environmental hazards. Soc Sci Q 84(2):242–261CrossRefGoogle Scholar
  31. D’Ercole R, Metzger P (2009) La vulnerabilité territorial: une nouvelle approche des risqué en milieu urbain. Cybergeo Eur J Geogr (online).
  32. Degg MR, Chester DK (2005) Seismic and volcanic hazards in Peru: changing attitudes to disaster mitigation. Geogr J 171:125–145CrossRefGoogle Scholar
  33. Dibben C, Chester DK (1999) Human vulnerability in volcanic environments: the case of Furnas, São Miguel, Azores. J Volcanol Geotherm Res 92(1–2):133–150CrossRefGoogle Scholar
  34. Dikau R, Weichselgartner J (2005) Der unruhige Planet—Der Mensch und die Naturgewalten. Primus Verlag, GermanyGoogle Scholar
  35. DNP (2003) Resultados de la encuesta de evaluación del SISBEN a nivel municipal. Departamento Nacional de Planeación. Misión Social, Programa Naciones Unidas para el Desarrollo, Bogotá, p 107Google Scholar
  36. Douglas J (2007) Physical vulnerability modelling in natural hazard risk assessment. Nat Hazards Earth Syst Sci 7:283–288CrossRefGoogle Scholar
  37. Dyhouse G, Benn JR, Hatchett J (2003) Floodplain modeling using HEC-RAS, Heastad MethodsGoogle Scholar
  38. ESRI (2011) Environmental Systems Research Institute. ArcGIS desktop help. Accessed 4 Jan 2012
  39. Fagents SA, Baloga SM (2006) Toward a model for the bulking and debulking of lahars. Journal of Geophysical Research-Solid Earth B111(10):B10201CrossRefGoogle Scholar
  40. Fekete A (2009) Validation of a social vulnerability index in context to river-floods in Germany. Nat Hazards Earth Syst Sci 9(2):393–403CrossRefGoogle Scholar
  41. Gaillard JC (2008) Alternative paradigms of volcanic risk perception: the case of Mt. Pinatubo in the Philippines. J Volcanol Geoth Res 172:315–328CrossRefGoogle Scholar
  42. Gaillard JC, Dibben C (2008) Volcanic risk perception and beyond. J Volcanol Geoth Res 172:163–169CrossRefGoogle Scholar
  43. Gavilanes-Ruiz JC, Cuevas-Muñiz A, Varley N, Gwynne G, Stevenson J, Saucedo-Girón R, Pérez-Pérez A, Aboukhalil M, Cortés-Cortés A (2009) Exploring the factors that influence the perception of risk: the case of Volcán de Colima, Mexico. J Volcanol Geoth Res 186:238–252CrossRefGoogle Scholar
  44. Glade T (2003) Vulnerability assessment in landslide risk analysis. Die Erde—Zeitschrift der Gesellschaft für Erdkunde zu Berlin 134:123–146Google Scholar
  45. Greiving S, Fleischhauer M, Lückenkötter J (2006) A Methodology for an integrated risk assessment of spatially relevant hazards. J Environ Plann Manag 49(1):1–19CrossRefGoogle Scholar
  46. Hegglin E, Huggel C (2008) An integrated assessment of vulnerability to glacial hazards. Mt Res Dev 28(3):299–309CrossRefGoogle Scholar
  47. Hubbard BE, Sheridan MF, Carrasco-Núñez G, Díaz-Castellón R, Rodríguez SR (2007) Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data. J Volcanol Geoth Res 160(1–2):99–124CrossRefGoogle Scholar
  48. Hufschmidt G, Crozier M, Glade T (2005) Evolution of natural risk: research framework and perspectives. Nat Hazards Earth Syst Sci 5(3):375–387CrossRefGoogle Scholar
  49. Huggel C, Ceballos JL, Pulgarín B, Ramírez J, Thouret JC (2007) Review and reassessment of hazards owing to volcano-glacier interactions in Colombia. Ann Glaciol 45:128–136CrossRefGoogle Scholar
  50. Huggel C, Schneider D, Miranda PJ, Delgado Granados H, Kääb A (2008) Evaluation of ASTER and SRTM DEM data for lahar modeling: a case study on lahars from Popocatépetl Volcano, Mexico. J Volcanol Geoth Res 170(1–2):99–110CrossRefGoogle Scholar
  51. Huggel C, Khabarov N, Obersteiner M, Ramírez J (2010) Implementation and integrated numerical modeling of a landslide early warning system: a pilot study in Colombia. Nat Hazards 52(2):501–518CrossRefGoogle Scholar
  52. INGEOMINAS (2009) Zonificación por movimientos en masa tipo flujo en la cuenca del Río Combeima – Ibagué – Tolima. Unidades geológicas superficiales. Instituto Colombiano de Geología y Minería (INGEOMINAS), Bogotá, p 45 (unpublished)Google Scholar
  53. IPCC (2012) Special report on managing the risks of extreme events and disasters to advance climate change Adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken D, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 582Google Scholar
  54. Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110:972–984CrossRefGoogle Scholar
  55. Keiler M, Fuchs S, Zischg A, Stötter J (2004) The adaption of technical risk analysis on natural hazards on a regional scale. Ann Geomorphol 135:95–110Google Scholar
  56. Komac M (2006) A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74(1–4):17–28CrossRefGoogle Scholar
  57. Kuhlicke C, Scolobig A, Tapsell S, Steinführer A, De Marchi B (2011) Contextualizing social vulnerability: findings from case studies across Europe. Nat Hazards 58(2):789–810CrossRefGoogle Scholar
  58. Lavigne F, Thouret J (2003) Sediment transportation and deposition by rain-triggered lahars at Merapi Volcano, Central Java, Indonesia. Geomorphology 49(1–2):45–69CrossRefGoogle Scholar
  59. Liu X, Yue ZQ, Tham LG, Lee CF (2002) Empirical assessment of debris flow risk on a regional scale in Yunnan Province, Southwestern China. Environ Manag 30:249–264CrossRefGoogle Scholar
  60. Major JJ, Newhall CG (1989) Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods. A global review. Bull Volcanol 52:1–27CrossRefGoogle Scholar
  61. Malczewski J (1999) Spatial multicriteria decision analysis. In: Spatial multicriteria decision making and analysis, a geographic information sciences approach. Wiley, New York, pp 11–48Google Scholar
  62. Mora Paez H, Guarnizo Alvarez LF, Murcia Leal A (1994) Volcan Nevado del Tolima—Generalidades y consideraciones glaciologicas. INGEOMINAS, Ministerio de Minas y Energia, Bogotá Informe No. 2184Google Scholar
  63. Moran A, Geitner C, Wastl M, Stötter J (2003) Natural hazards assessment in the community of Ólafsfiörður, Icland. A Regional-Scale Risk Analysis. Die Erde—Zeitschrift der Gesellschaft für Erdkunde zu Berlin 134:147–162Google Scholar
  64. Muñoz-Salinas E, Castillo-Rodríıguez M, Manea V, Manea M, Palacios D (2009) Lahar flow simulations using LAHARZ program: application for the Popocatepetl volcano, Mexico. J Volcanol Geoth Res 182(1–2):13–22CrossRefGoogle Scholar
  65. Neall V (1976) Lahars as major geological hazards. Bull Eng Geol Environ 14:233–240Google Scholar
  66. Núñez Tello A (1996) Mapa Geologico del Departamento del Tolima—Geología, recursos geológicos y amenazas geológicas. INGEOMINAS, Ministerio de Minas y Energia, BogotáGoogle Scholar
  67. Papathoma-Köhle M, Kappes M, Keiler M, Glade T (2010) Physical vulnerability assessment for alpine hazards: state of the art and future needs. Nat Hazards 58(2):645–680CrossRefGoogle Scholar
  68. Paton D, Smith L, Daly M, Johnston D (2008) Risk perception and volcanic hazard mitigation: individual and social perspectives. J Volcanol Geoth Res 172:179–188CrossRefGoogle Scholar
  69. Paton D, Sagala S, Okada N, Jang LJ, Burgelt PT, Gregg CE (2010) Making sense of natural hazard mitigation: personal, social and cultural influences. Environ Hazards 9(2):183–196CrossRefGoogle Scholar
  70. Peduzzi P, Herold HDC (2005) Mapping disastrous natural hazards using global datasets. Nat Hazards 35(2):265–289CrossRefGoogle Scholar
  71. Petrova E (2006) Vulnerability of Russian regions to natural risk: experience of quantitative assessment. Nat Hazards Earth Syst Sci 6:49–54CrossRefGoogle Scholar
  72. Pierson TC (1995) Flow characteristics of large eruption-triggered debris flows at snow-clad volcanoes: constraints for debris-flow models. J Volcanol Geoth Res 66:283–294CrossRefGoogle Scholar
  73. Pierson T, Scott K (1985) Downstream dilution of a lahar: transition from debris flow to hyperconcentrated streamflow. Water Resour Res 21(10):1511–1524CrossRefGoogle Scholar
  74. Pierson TC, Janda RJ, Thouret J, Borrero CA (1990) Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J Volcanol Geoth Res 41:17–66CrossRefGoogle Scholar
  75. Proyecto Multinacional Andino: Geociencias para las Comunidades Andinas (2007) Movimientos en masa en la región andina: una guía para la evaluación de amenazas. Servicio Nacional de Geología y Minería, Publicación Geológica Multinacional, 4. Canada, p 432Google Scholar
  76. Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogram Rem Sens 57:241–262CrossRefGoogle Scholar
  77. Raetzo H, Lateltin O, Bollinger D, Tripet J (2002) Hazard assessment in Switzerland—codes of practice for mass movements. Bull Eng Geol Environ 61(3):263–268CrossRefGoogle Scholar
  78. Remondo J, Bonachea J, Cendrero A (2008) Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology 94:496–507CrossRefGoogle Scholar
  79. Sarmiento JO, Triana JG, Rodriguez M, Amaya LE, Galicia RA (2005a) Caracterización del centro poblado Juntas. Municipio de Ibagué, Tolima, p 117Google Scholar
  80. Sarmiento JO, Triana JG, Rodriguez M, Amaya LE, Galicia RA (2005b) Caracterización del centro poblado Pico de Oro—Documento Resumen. Municipio de Ibagué, Tolima, p 24Google Scholar
  81. Schneider D, Granados D, Huggel C, Kääb A (2008) Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccíhuatl (Central Mexico). Nat Hazards Earth Syst Sci 8:559–571CrossRefGoogle Scholar
  82. Siebert L, Simkin T, Kimberly P (2011) Volcanoes of the world, 3rd edn. University of California Press, California, p 568Google Scholar
  83. Spence RJ, Baxter PJ, Zuccaro G (2004) Building vulnerability and human casuality estimation for a pyroclastic flow: a model and its application to Vesuvius. J Volcanol Geoth Res 133:321–343CrossRefGoogle Scholar
  84. Stevens NF, Manville V, Heron DW (2002) The sensitivity of a volcanic flow model to digital elevation model accuracy: experiments with digitised map contours and interferometric SAR at Ruapehu and Taranaki volcanoes, New Zealand. J Volcanol Geoth Res 119(1–4):89–105Google Scholar
  85. Tapsell, S, McCarthy, S, Faulkner, H, Alexander, M (2010) Social vulnerability to natural hazards. CapHaz-Net WP4 Report, Flood Hazard Research Centre—FHRC, Middlesex University, London, p. 92. Available at:
  86. Thomalla F, Downing T, Spanger-Siegfried E, Han G, Rockström J (2006) Reducing hazard vulnerability: towards a common approach between disaster risk reduction and climate adaptation. Disasters 30(1):39–48CrossRefGoogle Scholar
  87. Thouret JC (1990) Effects of the November 13, 1985 eruption on the snow pack and ice cap of Nevado del Ruiz volcano, Colombia. J Volcanol Geoth Res 41:177–201CrossRefGoogle Scholar
  88. Thouret JC, Laforge C (1994) Hazard appraisal and hazard-zone mapping of flooding and debris flowage in the Rio Combeima valley and Ibagué City, Tolima Department, Colombia. GeoJournal 34:407–413Google Scholar
  89. Thouret JC, Cantagrel JM, Robin C, Murcia A, Salinas R, Cepeda H (1995) Quaternary eruptive history and hazard-zone model at Nevado del Tolima and Cerro Machin volcanoes, Colombia. J Volcanol Geoth Res 66(1–4):397–426CrossRefGoogle Scholar
  90. Thouret JC, Lavigne F, Kelfoun K, Bronto S (2000) Toward a revised hazard assessment at Merapi volcano, Central Java. J Volcanol Geoth Res 100:479–502CrossRefGoogle Scholar
  91. Tingsanchali T, Karim MF (2005) Flood hazard and risk analysis in the southwest region of Bangladesh. Hydrol Process 19(10):2055–2069CrossRefGoogle Scholar
  92. Tran P, Shaw R, Chantry G, Norton J (2009) GIS and local knowledge in disaster management: a case study of flood risk mapping in Viet Nam. Disasters 33:152–169CrossRefGoogle Scholar
  93. UNISDR (2011) Terminology of disaster risk reduction, Accessed 4 Apr 2011
  94. Uzielli M, Nadim F, Lacasse S, Kaynia AM (2008) A conceptual framework for quantitative estimation of physical vulnerability to landslides. Eng Geol 102:251–256. doi: 10.1016/j.enggeo.2008.03.011 CrossRefGoogle Scholar
  95. van Westen C, van Asch T, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184CrossRefGoogle Scholar
  96. Varnes DJ (1984) Landslide hazard zonation—a review of principles and practice. United Nations Educational, Scientific and Cultural Organisation (UNESCO), Paris, p 63Google Scholar
  97. Vergara Sanchez H, Moreno Espitia M (1992) Estudio geologico—geotecnico y aptitud urbanistica de la ciudad de Ibagué, Informe 2153b. INGEOMINAS, Ministerio de Minas y Energia, BogotáGoogle Scholar
  98. Verstappen H (1992) Volcanic hazards in Colombia and Indonesia: lahars and related phenomena. In: McCall GJH, Laming DJC, Scott SC (eds) Geohazards—natural and man made. Association of Geoscientists for International Development, London, pp 33–42Google Scholar
  99. Voight B (1996) The management of volcano emergencies—Nevado del Ruiz. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcanic hazards. Springer, Berlin, pp 719–769CrossRefGoogle Scholar
  100. Weichselgartner J (2001) Disaster mitigation—the concept of vulnerability revisited. Disaster Prev Manag 10(2):85–94CrossRefGoogle Scholar
  101. Worni R, Huggel C, Stoffel M, Pulgarín B (2012) Challenges of modelling recent, very large lahars at Nevado del Huila Volcano, Colombia. Bull Volcanol 74(2):309–324CrossRefGoogle Scholar
  102. Yoshimatsu H, Abe S (2006) A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides 3(2):149–158CrossRefGoogle Scholar
  103. Zimmermann M, Pozzi A, Stoessel F (2005) Vademecum—hazard maps and related instruments—the Swiss system and its application abroad, capitalisation of experience. Swiss Agency for Development and Cooperation, Bern, p 34Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Matthias Künzler
    • 1
    Email author
  • Christian Huggel
    • 1
  • Juan Manuel Ramírez
    • 2
  1. 1.Department of GeographyUniversity of ZurichZurichSwitzerland
  2. 2.Swiss Agency for Development and CooperationBogotáColombia

Personalised recommendations