Natural Hazards

, Volume 66, Issue 3, pp 1481–1500 | Cite as

Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge

  • I.-I. Lin
  • Gustavo J. Goni
  • John A. Knaff
  • Cristina Forbes
  • M. M. Ali
Original Paper

Abstract

Accurate tropical cyclone track and intensity forecasts are vital to storm surge prediction and risk management. However, current cyclone intensity forecast skill is deficient, especially for rapid, unexpected intensification events. These sudden intensification events could be catastrophic if they occur just prior to making landfall in heavily populated and storm surge-vulnerable regions of the world. New satellite altimetry observations have revealed that oceanic subsurface warm features such as eddies and currents could make a critical contribution to the sudden intensification of high-impact cyclones. These warm features are characterized by high ocean heat content or tropical cyclone heat potential (TCHP) and can effectively limit a cyclone’s self-induced negative feedback from ocean cooling to favor intensification. This manuscript presents recent advancements in the understanding of the ocean’s role in generating intense tropical cyclones, that can produce high storm surge events such as Hurricane Katrina (2005) and ‘killer’ Cyclone Nargis (2008), which produced high storm surge events. Regional characteristics and on-going cyclone intensity forecast and storm-surge modeling efforts are also described. Quantitative assessment based on the case of Hurricane Rita (2005) revealed that an encounter with a high TCHP region can lead to large difference in the subsequent surge and inundation. The results show that, after a high TCHP encounter, there is approximately a 30 % increase in surge and inundation along the coast and new areas become submerged deep inland, as compared to a tropical cyclone that does not encounter a high TCHP region along its storm track.

Keywords

Storm surge Tropical cyclone Intensity forecast Heat potential 

References

  1. Ali MM, Sharma R, Cheney R (1998) An atlas of the North Indian Ocean eddies from TOPEX altimeter derived sea surface heights. Special publication, ISRO-SAC-SP-69-9, p 6Google Scholar
  2. Ali MM, Jagadeesh PSV, Jain S (2007a) Effects of eddies on Bay of Bengal cyclone intensity. EOS Trans Am Geophys Union 88:93–95CrossRefGoogle Scholar
  3. Ali MM, Sinha P, Jain S, Mohanty UC (2007b) Impact of sea surface height anomalies on cyclone track. Nat Preced. doi:10.1038/npre.2007.1001.1
  4. Ali MM, Jagadeesh PSV, Lin II, Hsu JY (2012) A neural network approach to estimate tropical cyclone heat potential in the Indian Ocean. IEEE Geoscience and Remote Sensing Letters (in press)Google Scholar
  5. Bender MA, Ginis I (2000) Real-case simulations of hurricane—ocean interaction using a high-resolution coupled model: effects on hurricane intensity. Mon Weather Rev 128:917–946CrossRefGoogle Scholar
  6. Berg R (2009) Tropical cyclone report: Hurricane Ike, National Hurricane Center, [online] http://www.nhc.noaa.gov/pdf/TCR-AL092008_Ike_3May10.pdf
  7. Beven JL et al (2008) Atlantic hurricane season of 2005. Mon Weather Rev 136:1109–1173CrossRefGoogle Scholar
  8. Black DE, Abahazi MA, Thunell RC, Kaplan A, Tappa EJ, Peterson LC (2007) An 8-century tropical Atlantic SST record from the Cariaco Basin: baseline variability, twentieth-century warming, and Atlantic hurricane frequency. Paleoceanography 22:PA4204Google Scholar
  9. Blake ES, Gibney EJ, Brown DP, Mainelli M, Franklin JL, Kimberlain TB (2009) Tropical cyclones of the eastern North Pacific basin, 1949–2006. Historical Climatology Series 6–5, National Climatic Data CenterGoogle Scholar
  10. Bunpapong M, Reid RO, Whitaker E (1985) An investigation of hurricane-induced forerunner surge in the Gulf of Mexico. Technical report. CERC-85-5, Coastal Engineering Research Center, U.S. Army EngineersGoogle Scholar
  11. Cione JJ, Uhlhorn EW (2003) Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon Weather Rev 131:1783–1796CrossRefGoogle Scholar
  12. Courtney J, Knaff JA (2009) Adapting the Knaff and Zehr wind-pressure relationship for operational use in tropical cyclone warning centres. Aust Meteorol Oceanogr J 58:167–179Google Scholar
  13. Cummings JA (2005) Operational multivariate ocean data assimilation. Q J R Meteorol Soc 131:3583–3604CrossRefGoogle Scholar
  14. D’Asaro E, Black P, Centurioni L, Harr P, Jayne S, Lin I–I, Lee C, Morzel J, Mrvaljevic R, Niiler P, Rainville L, Sanford T, David Tang T-Y (2011) Typhoon-ocean interaction in the western North Pacific, part 1. Oceanography 24(4):24–31. doi:10.5670/oceanog.2011.91 CrossRefGoogle Scholar
  15. DeMaria M, Kaplan J (1994) A statistical hurricane prediction scheme (SHIPS) for the Atlantic basin. Weather Forecast 9:209–220CrossRefGoogle Scholar
  16. DeMaria M, Mainelli M, Shay LK, Knaff JA, Kaplan J (2005) Further improvements to the statistical hurricane intensity prediction scheme (SHIPS). Weather Forecast 20:531–543CrossRefGoogle Scholar
  17. Emanuel KA (1986) An air-sea interaction theory for tropical cyclones. Part I: steady state maintenance. J Atmos Sci 43:585–604CrossRefGoogle Scholar
  18. Emanuel KA (1995) The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J Atmos Sci 52:3959–3968Google Scholar
  19. Emanuel KA (1999) Thermodynamic control of hurricane intensity. Nature 401:665–669CrossRefGoogle Scholar
  20. Emanuel K, DesAutels C, Holloway C, Korty R (2004) Environmental control of tropical cyclone intensity. J Atmos Sci 61:843–858CrossRefGoogle Scholar
  21. Fandry CB, Leslie LM, Steedman RK (1984) Kelvin-type coastal surges generated by tropical cyclones. J Phys Oceanogr 14(3):582–593CrossRefGoogle Scholar
  22. Forbes C, Rhome J (2012) An automated operational storm surge prediction system for the national hurricane center. Estuarine and coastal modeling XII. Spaulding ML (ed) ASCE (in press)Google Scholar
  23. Forbes C, Luettich RA Jr, Mattocks C, Westerink JJ (2010a) A retrospective evaluation of the storm surge produced by Hurricane Gustav (2008): forecast and hindcast results. Weather Forecast 25:1577–1602CrossRefGoogle Scholar
  24. Forbes C, Luettich R, Mattocks C (2010b) Storm surge simulations of hurricane Ike (2008): its impact in Louisiana and Texas. Estuarine and coastal modeling XI. Spaulding ML (ed) ASCE, pp 704–723Google Scholar
  25. Franklin JL, Avila LA, Beven JL, Lawrence MB, Pasch RJ, Stewart SR (2003) Eastern North Pacific hurricane season of 2002. Mon Weather Rev 131:2379–2393CrossRefGoogle Scholar
  26. Fu L–L, Christensen EJ, Yamarone CA, Lefebvre M, Menard Y, Dorrer M, Escudier P (1994) TOPEX/POSEIDON mission overview. J Geophys Res 99(C12):24369–24382Google Scholar
  27. Gill A (1988) Atmosphere-ocean dynamics. Academic Press, LondonGoogle Scholar
  28. Goni GJ, Trinanes JA (2003) Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. EOS Trans Am Geophys Union 84:573–580CrossRefGoogle Scholar
  29. Goni G, Kamholz S, Garzoli S, Olson D (1996) Dynamics of the Brazil-Malvinas confluence based on inverted echo sounders and altimetry. J Geophys Res 101:16273–16289CrossRefGoogle Scholar
  30. Goni G, DeMaria M, Knaff J, Sampson C, Ginis I, Bringas F, Mavume A, Lauer C, Lin I–I, Ali MM, Sandery P, Ramos-Buarque S, Kang K, Mehra A, Chassignet E, Halliwell G (2009) Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography 22(3):190–197CrossRefGoogle Scholar
  31. Gopalakrishna VV, Ali MM, Araligidad N, Shenoy S, Shum CK, Yi Y (2003) An atlas of XBT thermal structures and TOPEX/POSEIDON sea surface heights in the North Indian Ocean, Special Publication, NIO-NRSA-SP-01-03, p 125Google Scholar
  32. Gopalan AKS, Gopalakrishna VV, Ali MM, Sharma R (2000) Detection of Bay of Bengal eddies from TOPEX and in situ observations. J Mar Res 58:721–734CrossRefGoogle Scholar
  33. Gray WM (1979) Hurricane, their formation, structure and likely role in the tropical circulation. In: Shaw DB (ed) Supplement of meteorology over tropical oceans. Royal Meteorological Society, pp 155–218Google Scholar
  34. Guy Carpenter and Co. (2003) Typhoon Maemi loss report 2003. Guy Carpenter & Co. Ltd., Asia Pacific Practice, Tower Place, London, EC3R 5BU, p 16. [online] http://www.guycarp.com/portal/extranet/pdf/GCPub/GC%20Typhoon%20Maemi%20report.pdf
  35. Halliwell GR Jr, Shay LK, Jacob SD, Smeadstad OM, Uhlhorn EW (2008) Improving ocean model initialization for coupled tropical cyclone forecast models using GODAE nowcasts. Mon Weather Rev 136:2576–2591CrossRefGoogle Scholar
  36. Holliday CR, Thompson AH (1979) Climatological characteristics of rapidly intensifying typhoons. Mon Weather Rev 107:1022–1034CrossRefGoogle Scholar
  37. IMD (2008) Report on cyclonic disturbances over north Indian Ocean during 2007, India Meteorological Department, New Delhi, 2008Google Scholar
  38. Jelesnianski CP, Chen J, Shaffer WA (1992) SLOSH: Sea Lake and Overland Surges from Hurricanes. NOAA Technical Report NWS 48, National Oceanic and Atmospheric Administration, U. S. Department of Commerce, p 71Google Scholar
  39. Kaplan J, DeMaria M, Knaff JA (2010) A revised tropical cyclone rapid intensification index for the Atlantic and East Pacific basins. Weather Forecast 25:220–241CrossRefGoogle Scholar
  40. Knaff JA (2009) Revisiting the maximum intensity of recurving tropical cyclones. Int J Clim 29:827–837. [online] http://rammb.cira.colostate.edu/resources/docs/knaff2009_recurvature.pdf Google Scholar
  41. Knaff JA, Zehr RM (2007) Re-examination of tropical cyclone wind-pressure relationships. Weather Forecast 22(1):71–88CrossRefGoogle Scholar
  42. Knaff JA, Sampson CR, DeMaria M, Marchok TP, Gross JM, McAdie CJ (2007) Statistical tropical cyclone wind radii prediction using climatology and persistence. Weather Forecast 22(4):781–791CrossRefGoogle Scholar
  43. Knaff JA, DeMaria M, Molenar DA, Sampson CR, Seybold MG (2011) An automated, objective, multi-satellite platform tropical cyclone surface wind analysis. J Appl Meteorol Climatol 50(10):2149–2166. doi:10.1175/2011JAMC2673.1 Google Scholar
  44. Leiper D, Volgenau D (1972) Hurricane heat potentical in the Gulf of Mexico. J Phys Oceanogr 2:218–224CrossRefGoogle Scholar
  45. Lin I-I (2012) Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J Geophys Res Ocean. doi:10.1029/2011JC007626
  46. Lin I-I, Liu WT, Wu CC, Chiang JCH, Sui CH (2003a) Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys Res Lett 30(3):1131CrossRefGoogle Scholar
  47. Lin I-I, Liu WT, Wu CC, Wong GTF, Hu C, Chen Z, Liang W-D, Yang Y, Liu K–K (2003b) New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys Res Lett 30(13):1718. doi:10.1029/2003GL0171413 Google Scholar
  48. Lin I-I, Wu CC, Emanuel K, Lee IH, Wu CR, Pun IF (2005) The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon Weather Rev 133(9):2635–2649CrossRefGoogle Scholar
  49. Lin I-I, Wu CC, Pun IF, Ko DS (2008) Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: ocean features and the category 5 typhoons’ intensification. Mon Weather Rev 136(9):3288–3306CrossRefGoogle Scholar
  50. Lin I-I, Chen CH, Pun IF, Liu WT, Wu CC (2009a) Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys Res Lett 36:L03817CrossRefGoogle Scholar
  51. Lin I-I, Pun IF, Wu CC (2009b) Upper ocean thermal structure and the western North Pacific category-5 typhoons part II: dependence on translation speed. Mon Weather Rev 137(11):3744–3757CrossRefGoogle Scholar
  52. Lin I-I, Chou M-D, Wu C–C (2011) Warm ocean eddy’s impact on typhoon morakot (2009)—a prelimenary study from remote sensing and numerical modelling. Terr Atmos Oceanic Sci 22(6):661–671. doi:10.3319/TAO.2011.08.19.01(TM)
  53. Mainelli M, DeMaria M, Shay LK, Goni G (2008) Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weather Forecast 23:3–16CrossRefGoogle Scholar
  54. Mattocks C, Forbes C (2008) A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Model 25:95–119CrossRefGoogle Scholar
  55. McPhaden MJ, Foltz GR, Lee T et al (2009) Ocean-atmosphere interaction during cyclone Nargis. EOS Trans Am Geophys Union 90(7):17CrossRefGoogle Scholar
  56. Merrill RT (1988) Environmental influences on hurricane intensification. J Atmos Sci 45:1678–1687CrossRefGoogle Scholar
  57. Nagamani PV, Ali MM, Goni GJ, Pedro D, Pezzullo JC, Udaya Bhaskar TVS, Gopalakrishna VV, Kurian N (2012) Validation of satellite-derived tropical cyclone heat potential with in situ observations in the North Indian Ocean. Remote Sens Lett 3(7):615–620Google Scholar
  58. Price JF (1981) Upper ocean response to a hurricane. J Phys Oceanogr 11:153–175CrossRefGoogle Scholar
  59. Pun IF, Lin II, Wu CR, Ko DS, Liu WT (2007) Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon intensity forecast. IEEE Trans Geosci Remote Sens 45:1616–1630CrossRefGoogle Scholar
  60. Pun IF, Chang Y-T, Lin I–I, Tang T-Y, Lien R-C (2011) Typhoon-ocean interaction in the Western North Pacific, part 2. Oceanography 24(4):32–41. doi:10.5670/oceanog.2011.92 Google Scholar
  61. Sanford TB, Price JF, Girton JB (2011) Upper-ocean response to hurricane Frances (2004) observed by profiling EM-APEX floats. J Phys Oceanogr 41:1041–1056CrossRefGoogle Scholar
  62. Scharroo R, Smith WHF, Lillibridge JL (2005) Satellite altimetry and the intensification of Hurricane Katrina. Eos Trans AGU 86(40):366CrossRefGoogle Scholar
  63. Shay LK, Goni GJ, Black PG (2000) Effects of a warm oceanic feature on Hurricane Opal. Mon Weather Rev 128:1366–1383CrossRefGoogle Scholar
  64. Taylor AA, Glahn B (2008) Probabilistic guidance for hurricane storm surge. 19th Conference on probability and statistics 7–4, New Orleans, LA, American Meteorological SocietyGoogle Scholar
  65. Webster PJ (2008) Myanmar’s deadly “daffodil”. Nat Geosci 1:488–490CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • I.-I. Lin
    • 1
  • Gustavo J. Goni
    • 2
  • John A. Knaff
    • 3
  • Cristina Forbes
    • 4
  • M. M. Ali
    • 5
  1. 1.Department of Atmospheric SciencesNational Taiwan UniversityTaipeiTaiwan
  2. 2.Atlantic Oceanographic and Meteorological LaboratoryNational Oceanic and Atmospheric AdministrationMiamiUSA
  3. 3.NESDIS/STAR, RAMMBCIRA/Colorado State UniversityFort CollinsUSA
  4. 4.Storm Surge UnitNOAA/NWS/NCEP/National Hurricane CenterMiamiUSA
  5. 5.Atmosphere and Ocean Sciences Group, DivisionNational Remote Sensing CentreHyderabadIndia

Personalised recommendations