Natural Hazards

, Volume 66, Issue 3, pp 1327–1343 | Cite as

Potential impacts of extreme storm surges on a low-lying densely populated coastline: the case of Dunkirk area, Northern France

  • Aurélie MaspataudEmail author
  • Marie-Hélène Ruz
  • Stéphane Vanhée
Original Paper


Along the southern coast of the North Sea, a large proportion of the Flemish coastal plain consists of densely populated reclaimed land, much of which lying below mean high tide level. This is particularly the case along the northern coast of France, from Dunkirk to the Belgium border, where the shoreline consists of coastal dunes that protect low-lying reclaimed lands from marine flooding. This area is vulnerable and subject to several risks. Extreme weather conditions could induce strong surges that could cause (1) a shoreline retreat, (2) marine submersion and (3) land and/or urban flooding due to drainage problems of the polders. Highly energetic events such as the November 2007 storm could have had much more severe consequences especially if they occurred at high tide and/or during a spring tide. In the current context of global change and projected sea-level rise, it is then important for the local authorities to take into account the potential impacts and return periods of such events, in order to implement coastal risk policies prevention and management, to reinforce sea defense, increase pumping station efficiency and plan warning systems against marine submersion and polder flooding, which is not the case yet in Northern France.


Storm surges Low-lying coastline Vulnerability Erosion Submersion Polder flooding 



This study was partly funded by the French “Agence Nationale pour la Recherche” (ANR) through the project VULSACO (VULnerability of SAndy COast systems to climatic and anthropic changes, ANR VMC06-009). A. Maspataud benefited from a PhD grant from the French Ministry of Education. The authors acknowledge support from the Institution Interdépartementale des Wateringues for providing pictures and map derived from LIDAR data.


  1. Brooks N (2003) Vulnerability, risk and adaptation: a conceptual framework. Tyndall Centre Working paper 38Google Scholar
  2. Clabaut P, Chamley H, Marteel H (2000) Evolution récente des dunes littorales à l’Est de Dunkerque (Nord de la France). Géomorphologie: Relief, Processus, Environnement 2:125–136CrossRefGoogle Scholar
  3. Clique PM, Lepetit JP (1986) Catalogue sédimentologique des côtes françaises, côtes de la mer du Nord et de la Manche. LNH, Eyrolles, ParisGoogle Scholar
  4. Gonnert G (1999) The analysis of storm surge climate change along the German coast during the 20th century. Quat Int 56:115–121CrossRefGoogle Scholar
  5. Gonnert G, Dube SK, Murty T, Siefert W (2001) Global storm surges. Theory, observations and applications, edited by German Coastal Engineering Research CouncilGoogle Scholar
  6. Haigh I, Nicholls R, Wells N (2010) Assessing changes in extreme sea levels: application to the English Channel, 1900–2006. Cont Shelf Res 30:1042–1055CrossRefGoogle Scholar
  7. IPCC (2001) Climate change 2001: impacts, adaptation and vulnerability, summary for policymakers. WMOGoogle Scholar
  8. IPCC (2007) Climate change 2007: synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, SwitzerlandGoogle Scholar
  9. Jelgersma S, Stive MJF, Van Der Valk L (1995) Holocene storm surge signatures in the coastal dunes of the western Netherlands. Mar Geol 125:95–110CrossRefGoogle Scholar
  10. Komar PD (1998) Beach processes and sedimentation, 2nd edn. Prentice Hall, Upper Saddle River, p 544Google Scholar
  11. Lamb H (1991) Historic storms of the North Sea. Cambridge University Press, British Isles and Northwest EuropeGoogle Scholar
  12. Langenberg H, Pfizenmayer A, Von Storch H, Sundermann J (1999) Storm-related sea level variations along the North Sea coast: natural variability and anthropogenic change. Cont Shelf Res 19(6):821–842CrossRefGoogle Scholar
  13. Lowe JA, Gregory JM (2005) The effects of climate change on storm surges around the United Kingdom. Philos Trans R Soc 363:1313–1328CrossRefGoogle Scholar
  14. Maspataud A (2011) Impacts des tempêtes sur la morphodynamique du profil côtier en milieu macrotidal. PhD thesis, Université du Littoral Côte d’Opale, Wimereux.
  15. Maspataud A, Ruz M-H, Héquette A (2009) Spatial variability in post-storm beach recovery along a macrotidal barred beach, southern North Sea. J Coast Res SI 56:88–92Google Scholar
  16. Masselink G, Anthony EJ (2001) Location and height of intertidal bars on macrotidal ridge and runnel beaches. Earth Surf Process Land 26:759–774CrossRefGoogle Scholar
  17. McRobie A, Spencer T, Gerritsen H (2005) The Big Flood: North Sea storm surge. Philos Trans R Soc A 363:1263–1270CrossRefGoogle Scholar
  18. Nicholls RJ, Hoozemans FMJ, Marchand M (1999) Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Glob Environ Chang 9:S69–S87CrossRefGoogle Scholar
  19. Nicholls RJ, Wong PP, Burkett VR, Codignotto JO, Hay JE, McLean RF, Ragoonaden S, Woodroffe CD (2007) Coastal systems and low-lying areas. Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 315–356Google Scholar
  20. Niemeyer H, Kaiser R, Knaack H, Dissanayabe P, Miani M, Elsebach J, Berkenbrink C, Heerling C, Ritzmann A (2011) Evaluation of coastal protection strategies for lowlands in respect of climate change. In: Proceedings of 34th IAHR-congress, Brisbane, AustraliaGoogle Scholar
  21. Parker JA, Foden D (2009) High-resolution measurement of a North Sea storm surge. J Coast Res SI 56:1656–1660Google Scholar
  22. Pirazzoli PA (2006) Projet Discobole—Contribution à la tâche 5: calcul de hauteur des niveaux d’eau extrêmes sur le littoral français. Meudon, CNRS, Laboratoire de Géographie Physique (UMR no. 8591), p 93Google Scholar
  23. Pirazzoli PA, Costa S, Dombush F (2007) Flood threat anomaly for the low coastal areas of the English Channel based on analysis of recent characteristic flood occurrences. Ocean Dyn 57:501–510Google Scholar
  24. Pond S, Pickard GL (1983) Introductory dynamical oceanography, 2nd edn. Elsevier Butterworth-Heinemann, Linacre HouseGoogle Scholar
  25. Reichmuth B, Anthony EJ (2002) The variability of ridge and runnel beach morphology: examples from northern France. J Coast Res SI 36:612–621Google Scholar
  26. Rockel B, Woth K (2007) Extremes of near-surface wind speed over Europe and their future changes as estimated from an ensemble of RCM simulations. Clim Chang 82. doi: 10.1007/s10584-006-9227-y
  27. Ruggiero P, Komar PD, McDouglas WG, Marra JJ, Beach RA (2001) Wave runup, extreme water levels and erosion of properties backing beaches. J Coast Res 17(2):407–419Google Scholar
  28. Ruz M-H, Anthony EJ, Faucon L (2005) Coastal dune evolution on a shoreline subject to strong human pressure: the Dunkirk area, northern France. In: Herrier J-L, Mees J, Salman A, Seys J, Van Nieuwenhuyse H, Dobbelaere I (eds) Proceedings ‘Dunes and Estuaries 2005’—international conference on nature restoration. Practices in European coastal habitats, Koksijde, Belgium, 19–23 Sept 2005, pp 441–449Google Scholar
  29. Ruz M-H, Héquette A, Maspataud A (2009) Identifying forcing conditions responsible for foredune erosion on the northern coast of France. J Coast Res SI 56:356–360Google Scholar
  30. SAFECOAST (2008) Coastal flood risk and trends for the future in the North Sea region. Results and recommendations of Project Safecoast. Synthesis report. Safecoast project team. The HagueGoogle Scholar
  31. Simon B (2008) Statistiques des niveaux marins extrêmes de pleine mer Manche et Atlantique. SHOM-CETMEFGoogle Scholar
  32. Stockdon HF, Holman RA, Howd PA, Sallenger AH (2006) Empirical parametrization of setup, swash and runup. Coast Eng 53(7):573–588CrossRefGoogle Scholar
  33. Stone GW, Orford JD (eds) (2004) Storms and their significance in coastal morpho-sedimentary dynamics. Mar Geol 210:368Google Scholar
  34. Tolman HL (1991) Effects of tides and storm surges on North Sea wind waves. J Phys Oceanogr Am Meteorol Soc 21:766–781CrossRefGoogle Scholar
  35. Tomasin A, Pirazzoli PA (2008) Extreme sea levels in the English Channel: calibration of the joint probability method. J Coast Res 24(4C):1–13Google Scholar
  36. Vasseur B, Héquette A (2000) Storm surges and erosion of coastal dunes between 1957 and 1988 near Dunkerque (France), southwestern North Sea. Coastal Geomorphology and Shoreline Management Unit JE 2208, ULCO. In: Pye K, Allen JRL (eds) Coastal and estuarine environments: sedimentology, geomorphology and geoarchaeology. Geol Soc Lond Spec Publ 175:99–107Google Scholar
  37. Verlaan M, Zijderveld A, de Vries H, Kroos J (2005) Operational storm surge forecasting in The Netherlands: developments in the last decade. Philos Trans R Soc 363:1441–1453CrossRefGoogle Scholar
  38. Von Storch H, Woth K (2008) Storm surges: perspectives and options. Sustain Sci 3:33–43CrossRefGoogle Scholar
  39. Watson R, Zinyowera M, Moss R, Dokken D (1997) The regional impacts of climate change: an assessment of vulnerability. Summary for policymakers. Report of IPCC working group IIGoogle Scholar
  40. Weisse R, Von Storch H, Niemeyer AD, Knaack H (2011) Changing North Sea storm surge climate: an increasing hazard? Ocean Coast Manag. doi: 10.1016/j.ocecoaman.2011.09.005 Google Scholar
  41. Wolf J (2009) Coastal flooding: impacts of coupled wave-surge-tide models. Nat Hazards 49:241–260CrossRefGoogle Scholar
  42. Woodworth PL, Flather RA, Williams JA, Wakelin SL, Jevrejeva S (2007) The dependence of UK extreme sea levels and storm surges on the North Atlantic Oscillation. Cont Shelf Res 27:935–946CrossRefGoogle Scholar
  43. Woth K, Weisse R, Von Storch H (2006) Climate change and North Sea storm surge extremes: an ensemble study of storm surge extremes expected in a changed climate projected by four different regional climate models. Ocean Dyn 56:3–15CrossRefGoogle Scholar
  44. Zhang K, Douglas BC, Leatherman SP (2004) Global warming and coastal erosion. Clim Chang 64:41–58CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Aurélie Maspataud
    • 1
    • 2
    • 3
    • 4
    Email author
  • Marie-Hélène Ruz
    • 1
    • 2
    • 3
  • Stéphane Vanhée
    • 5
  1. 1.Univ Lille Nord de FranceLilleFrance
  2. 2.ULCO, LOGWimereuxFrance
  3. 3.CNRS, UMR8187WimereuxFrance
  4. 4.UMR CNRS 6143 M2C, Univ. de RouenMont Saint AignanFrance
  5. 5.Institution Interdépartementale des WateringuesSaint-OmerFrance

Personalised recommendations