Natural Hazards

, Volume 63, Issue 2, pp 1273–1278 | Cite as

Civil nuclear power at risk of tsunamis

  • Joaquin Rodriguez-Vidal
  • Jose M. Rodriguez-Llanes
  • Debarati Guha-Sapir
Short Communication

Abstract

Tsunamis have caused severe destruction to vulnerable populations through the ages. Commonly generated from oceanic subduction zones, they still remain difficult to predict. Recent instrumental record on risk of occurrence can be enhanced when complemented by historical, archeological, and geological studies. We assessed the coast at risk and overlaid civilian nuclear sites active, in expansion and under construction. The worldwide distribution of threatened nuclear sites revealed a clustering in South and South-East Asia. We identified four areas for urgent policy attention, including the need for funding to translate scientific risks assessment into effective policy.

Keywords

Nuclear power Risk assessment Development Tsunami Earthquake 

References

  1. Adger WN, Hughes TP, Folke C, Carpenter SR, Rockström J (2005) Social-ecological resilience to coastal disasters. Science 309:1036–1039. doi:10.1126/science.1112122 CrossRefGoogle Scholar
  2. Baptista MA, Miranda JM (2009) Revision of the Portuguese catalog of tsunamis. Nat Hazards Earth Syst Sci 9:25–42. doi:10.5194/nhess-9-25-2009 CrossRefGoogle Scholar
  3. Borrero JC, Sieh K, Chlieh M, Synolakis CE (2006) Tsunami inundation modeling for western Sumatra. Proc Natl Acad Sci USA 103:19673–19677. doi:10.1073/pnas.0604069103 CrossRefGoogle Scholar
  4. Cummins PhR (2007) The potential for giant tsunamigenic earthquakes in the northern Bay of Bengal. Nature 449:75–78. doi:10.1038/nature06088 CrossRefGoogle Scholar
  5. Danielsen F, Sørensen MK, Olwig MF, Selvam V, Parish F et al (2005) The Asian tsunami: a protective role for coastal vegetation. Science 310:643. doi:10.1126/science.1118387 CrossRefGoogle Scholar
  6. Das S, Vincent JR (2009) Mangroves protected villages and reduced death toll during Indian super cyclone. Proc Natl Acad Sci USA 106:7357–7360. doi:10.1073/pnas.0810440106 CrossRefGoogle Scholar
  7. Dawson AG, Stewart I (2007) Tsunami deposits in the geological record. Sediment Geol 200:166–183. doi:10.1016/j.sedgeo.2007.01.002 CrossRefGoogle Scholar
  8. Dilley M, Chen RS, Deichmann U, Lerner-Lam A, Arnold M et al (2005) Natural disaster hotspots: a global risk analysis. The World Bank, WashingtonCrossRefGoogle Scholar
  9. Dominey-Howes D (2007) Geological and historical records of tsunami in Australia. Mar Geol 239:99–123. doi:10.1016/j.margeo.2007.01.010 CrossRefGoogle Scholar
  10. Editorial (2011) Lessons from the past. Nature 471:547. doi:10.1038/471547a Google Scholar
  11. Guha-Sapir D, Rodriguez-Llanes JM, Jakubicka T (2011) Using disaster footprints, population databases and GIS to overcome persistent problems for human impact assessment in flood events. Nat Hazards 58:845–852. doi:10.1007/s11069-011-9775-y Google Scholar
  12. Heidarzadeh M, Pirooz MD, Zaker NH, Yalciner AC, Mokhtari M et al (2008) Historical tsunami in the Makran Subduction Zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Eng 35:774–786. doi:10.1016/j.oceaneng.2008.01.017 CrossRefGoogle Scholar
  13. Hergert T, Heidbach O (2010) Slip-rate variability and distributed deformation in the Marmara Sea fault system. Nature Geosci 3:132–135. doi:10.1038/ngeo739 CrossRefGoogle Scholar
  14. International Atomic Energy Agency (2011) http://www.iaea.org. Accessed April 2011
  15. Jankaew K, Atwater BF, Sawai Y, Choowong M, Charoentitirat T et al (2008) Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 445:1228–1231. doi:10.1038/nature07373 CrossRefGoogle Scholar
  16. Kelsey HM, Nelson AR, Hemphill-Haley E, Witter RC (2005) Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone. Geol Soc Am Bull 117:1009–1032. doi:10.1130/B25452.1 CrossRefGoogle Scholar
  17. Macilwain C (2011) Concerns over nuclear energy are legitimate. Nature 471:549. doi:10.1038/471549a CrossRefGoogle Scholar
  18. Minoura K, Imamura F, Sugawara D, Kono Y, Iwashita T (2001) The 869 Jõgan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan. J Nat Dis Sci 23:83–88Google Scholar
  19. Moore GF, Bangs NL, Taira A, Kuramoto S, Pangborn E et al (2007) Three-dimensional splay fault geometry and implications for tsunami generation. Science 318:1128–1131. doi:10.1126/science.1147195 CrossRefGoogle Scholar
  20. Nalbant SS, Steacy S, Sieh K, Natawidjaja D, McCloskey J (2005) Seismology: earthquake risk on the Sunda trench. Nature 435:756–757. doi:10.1038/nature435756a CrossRefGoogle Scholar
  21. Nanayama F, Satake K, Furukawa R, Shimokawa K, Atwater BF et al (2003) Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424:660–663. doi:10.1038/nature01864 CrossRefGoogle Scholar
  22. Nanayama F, Furukawa R, Shigeno K, Makino A, Soeda Y et al (2007) Unusually nine large tsunami deposits from the past 4000 years at Kiritappu marsh along the southern Kuril Trench. Sediment Geol 200:275–294. doi:10.1016/j.sedgeo.2007.01.008 CrossRefGoogle Scholar
  23. National Geophysical Data Center/World Data Center (NGDC/WDC) (2011) Historical Tsunami Database, Boulder, CO, USA. Available at http://www.ngdc.noaa.gov/hazard/tsu_db.shtml
  24. Noji EK (1997) The public health consequences of disasters. Oxford University Press, New YorkGoogle Scholar
  25. Parsons T, Toda S, Stein RS, Barka A, Dieterich JH (2000) Heightened odds of large earthquakes near Istanbul: an interaction-based probability calculation. Science 288:661–665. doi:10.1126/science.288.5466.661 CrossRefGoogle Scholar
  26. Patt AG, Tadross M, Nussbaumer P, Asante K, Metzger M et al (2010) Estimating least-developed countries’ vulnerability to climate-related extreme events over the next 50 years. Proc Natl Acad Sci USA 107:1333–1337. doi:10.1073/pnas.0910253107 CrossRefGoogle Scholar
  27. Rodríguez-Vidal J, Ruiz F, Cáceres LM, Abad M, González-Regalado ML et al (2011) Geomarkers of the 218-209 BC Atlantic tsunami in the Roman Lacus Ligustinus (SW Spain): a palaeogeographical approach. Quat Int 242:201–212. doi: 10.1016/j.quaint.2011.01.032 Google Scholar
  28. Scheffers A, Kelletat D (2003) Sedimentologic and geomorphologic tsunami imprints worldwide: a review. Earth Sci Rev 63:83–92. doi:10.1016/S0012-8252(03)00018-7 CrossRefGoogle Scholar
  29. Shaw B, Ambrasey NN, England PC, Floyd MA, Gorman GJ et al (2008) Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake. Nature Geosci 1:268–276. doi:10.1038/ngeo151 CrossRefGoogle Scholar
  30. Smith JT, Comans RNJ, Beresford NA, Wright SM, Howard BJ et al (2000) Pollution: Chernobyl’s legacy in food and water. Nature 405:141. doi:10.1038/35012139 CrossRefGoogle Scholar
  31. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT et al (2009) Sinking deltas due to human activities. Nature Geosci 2:681–686. doi:10.1038/ngeo629 CrossRefGoogle Scholar
  32. Titov V, Rabinovich AB, Mofjeld HO, Thomson RE, González FI (2005) The global reach of the 26 December 2004 Sumatra tsunami. Science 309:2045–2048. doi:10.1126/science.1114576 CrossRefGoogle Scholar
  33. US Geological Survey (2011) http://www.usgs.gov. Accessed April 2011
  34. Ziegler AD, Wong PP, Grundy-Warr C (2009) Still vulnerable to killer tsunamis. Science 326:1188–1189. doi:10.1126/science.326.5957.1188 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Joaquin Rodriguez-Vidal
    • 1
  • Jose M. Rodriguez-Llanes
    • 2
  • Debarati Guha-Sapir
    • 2
  1. 1.Department of Geodynamics and PaleontologyUniversity of HuelvaHuelvaSpain
  2. 2.Centre for Research on the Epidemiology of Disasters, Institute of Health and SocietyUniversité catholique de LouvainBrusselsBelgium

Personalised recommendations