Natural Hazards

, Volume 62, Issue 2, pp 691–721 | Cite as

Rockfall risk assessment to persons travelling in vehicles along a road: the case study of the Amalfi coastal road (southern Italy)

  • Settimio FerlisiEmail author
  • Leonardo Cascini
  • Jordi Corominas
  • Fabio Matano
Original Paper


The paper deals with the assessment of rockfall risk to persons travelling in vehicles along the SS163 road, an important transportation corridor supporting a high vehicle traffic within the well-known tourist area of the Amalfi Coast (southern Italy). To this aim, the Rockfall Hazard Rating System (RHRS) and quantitative risk assessment (QRA) procedures, in this latter case for three rockfall risk scenarios, are applied. With reference to a large portion (33.820 out of a total of 50.365 km) of the SS163 road, the obtained QRA results highlight that, although the estimated individual risk to life satisfies the adopted tolerable risk criterion, the computed societal risk cannot be tolerated. Starting from this result, site-specific QRA analyses—carried out with reference to some road sections chosen on the basis of the RHRS results—allow the detection of the SS163 portions where the individual risk to life exceeds the tolerable risk threshold and, then, the recourse to mitigation measures could reveal necessary. In this regard, RHRS and QRA methods can be considered complementary tools in prioritizing the road sections where construction funds can be profitably spent in order to mitigate the rockfall risk with reference to both direct consequences (life loss) and indirect ones (traffic delay and diversions).


Rockfall Risk for life loss RHRS method QRA 


  1. AGS (2007) Practice note guidelines for landslide risk management. Aust Geomechanics Soc Aust Geomech 42(1):62–114. ISSN: 0818-9110Google Scholar
  2. Benjamin JR, Cornell CA (1970) Probability, statistics and decision for civil engineers. McGraw-Hill, New YorkGoogle Scholar
  3. Budetta P (2004) Assessment of rockfall risk along roads. Nat Hazards Earth Syst Sci 4:71–81. doi: 1684-9981/nhess/2004-4-71 CrossRefGoogle Scholar
  4. Budetta P (2011) Application of the Swiss Federal Guidelines on rock fall hazard: a case study in the Cilento region (Southern Italy). Landslides 8:381–389. doi: 10.1007/s10346-010-0247-3 CrossRefGoogle Scholar
  5. Bunce CM, Cruden DM, Morgenstern NR (1997) Assessment of the hazard from a rock fall on a highway. Can Geotechnical J 34:344–356Google Scholar
  6. Caiazzo C, Ascione A, Cinque A (2006) Late tertiary–quaternary tectonics of the southern apennines (Italy): new evidences from the Tyrrhenian slope. Tectonophysics 421:23–51. doi: 10.1016/j.tecto.2006.04.011 CrossRefGoogle Scholar
  7. Cantarella GE, de Luca S (2006) Studio della mobilità in Costiera Amalfitana per un sistema integrato di trasporto collettivo. Research report. Department of Civil Engineering, University of Salerno, Italy (in Italian)Google Scholar
  8. Cascini L, Ferlisi S, Tagliafierro G (2002) Il contributo delle indagini storiche nella definizione del rischio da frana: un caso di studio. In: Proceeding of the XXI Italian Geotechnical Congress. L’Aquila, 11–13 September. Pàtron Editore, Bologna, pp 135–142 (in Italian)Google Scholar
  9. Cascini L, Ferlisi S, Vitolo E (2008) Individual and societal risk owing to landslides in the Campania region (southern Italy). Georisk 2(3):125–140. doi: 10.1080/17499510802291310 Google Scholar
  10. Corominas J, Moya J (2008) A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102:193–213. doi: 10.1016/j.enggeo.2008.03.018 CrossRefGoogle Scholar
  11. Corominas J, Copons R, Moya J, Vilaplana JM, Altimir J, Amigó J (2005) Quantitative assessment of the residual risk in a rockfall protected area. Landslides 2:343–357. doi: 10.1007/s10346-005-0022-z CrossRefGoogle Scholar
  12. Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87CrossRefGoogle Scholar
  13. De Blasio I, Lima A, Perrone V, Russo M (1981) Nuove vedute sui depositi miocenici della Penisola Sorrentina. Bollettino della Società Geologica Italiana 100:57–70 (in Italian)Google Scholar
  14. Di Crescenzo G, Santo A (2007) High-resolution mapping of rock fall instability through the integration of photogrammetric, geomorphological and engineering–geological surveys. Quat Int 171–172:118–130. doi: 10.1016/j.quaint.2007.03.025 CrossRefGoogle Scholar
  15. Fell R, Ho KKS, Lacasse S, Leroi E (2005) A framework for landslide risk assessment and management. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis, London, pp 3–26Google Scholar
  16. Fell R, Corominas J, Bonnard CH, Cascini L, Leroi E, Savage WZ, on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98. doi: 10.1016/j.enggeo.2008.03.022 CrossRefGoogle Scholar
  17. Geotechnical Engineering Office (1998) Landslides and boulder falls from natural terrain: interim risk guidelines. GEO Report No. 75. Geotechnical Engineering Office, The Government of the Hong Kong Special Administrative RegionGoogle Scholar
  18. Ho KKS, Leroi E, Roberds B (2000) Quantitative risk assessment—application, myths and future direction. Proceeding of the international conference on geotechnical and geological engineering GeoEng2000, 19–24 November 2000, Lancaster: Technomic Publishing, Melbourne, vol 1, pp 269–312Google Scholar
  19. Hungr O, Wong HN (2007) Landslide risk acceptability criteria: are F-N plots objective? Geotechnical News, pp 3–6. ISSN: 0823650XGoogle Scholar
  20. Hungr O, Evans SG, Hazzard J (1999) Magnitude and frequency of rock falls and rock slides along the main transportation corridors of south-western British Columbia. Can Geotechnical J 36:224–238CrossRefGoogle Scholar
  21. Hutchinson JN (1988). Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. General report. In: Bonnard CH (ed) Proceedings of the 5th international symposium on landslides, Lausanne, Switzerland. A.A. Balkema, Rotterdam, vol 1, pp 3–35Google Scholar
  22. ISPRA – Servizio Geologico d’Italia (2011). Progetto CARG—geological map of Italy at 1:50,000 scale. Sheets n. 466 Sorrento and n. 467 Salerno. (
  23. Jaiswal P, van Westen CJ, Jetten V (2010) Quantitative assessment of direct and indirect landslide risk along transportation lines in southern India. Nat Hazards Earth Syst Sci 10:1253–1267. doi: 10.5194/nhess-10-1253-2010 CrossRefGoogle Scholar
  24. Katz O, Reichenbach P, Guzzetti F (2011) Rock fall hazard along the railway corridor to Jerusalem, Israel, in the Soreq and Refaim valleys. Nat Hazards 56:649–665. doi: 10.1007/s11069-010-9580-z CrossRefGoogle Scholar
  25. Leroi E, Bonnard Ch, Fell R, McInnes R (2005) Risk assessment and management. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis, London, pp 159–198Google Scholar
  26. ODT (2004) Stopping sight distance and decision sight distance. Discussion Paper n. 8.A. Prepared for Oregon Department of Transportation—Salem, Oregon by The Kiewit Center for Infrastructure and Transportation, Oregon State University- Corvallis, Oregon 97331-2302 September 2004Google Scholar
  27. Palma B, Parise M, Reichenbach P, Guzzetti F (2011) Rockfall hazard assessment along a road in the Sorrento Peninsula, Campania, southern Italy. Nat Hazards. doi: 10.1007/s11069-011-9899-0 Google Scholar
  28. Pantelidis L (2011) A critical review of highway slope instability risk assessment systems. Bull Eng Geol Environ 70(3):395–400. doi: 10.1007/s10064-010-0328-5 CrossRefGoogle Scholar
  29. Pierson LA, Van Vickle R (1993) Rockfall hazard rating system participant’s manual. Federal Highway Administration, Publication No. FHWA SA-93-057, 104 ppGoogle Scholar
  30. Regione Campania (2006a) Carta tecnica regionale (CTR). Topographic map at 1:5,000 scale, years of data acquisition: 2004–2005Google Scholar
  31. Regione Campania (2006b) Ortofoto Regione Campania (ORCA). (Digital orthophoto at 1:5,000 scale, years of data acquisition: 2004–2005). Edited by Amministrazione Provinciale di Napoli—Ingegneria Cartografica Europea g.e.i.e.Google Scholar
  32. Roberds W (2005) Estimating temporal and spatial variability and vulnerability. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis, London, pp 129–157Google Scholar
  33. Santi PM, Christopher P, Russell CP, Jerry D, Higgins JD, Spriet JI (2009) Modification and statistical analysis of the Colorado Rockfall Hazard Rating System. Eng Geol 104:55–65. doi: 10.1016/j.enggeo.2008.08.009 CrossRefGoogle Scholar
  34. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Natural hazard series, vol 3. UNESCO, ParisGoogle Scholar
  35. Wong HN (2005) Landslide risk assessment for individual facilities. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis, London, pp 237–296Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Settimio Ferlisi
    • 1
    Email author
  • Leonardo Cascini
    • 1
  • Jordi Corominas
    • 2
  • Fabio Matano
    • 3
  1. 1.Department of Civil EngineeringUniversity of SalernoFiscianoItaly
  2. 2.Department of Geotechnical Engineering and GeosciencesTechnical University of Catalonia (UPC)BarcelonaSpain
  3. 3.NapoliItaly

Personalised recommendations