Natural Hazards

, Volume 62, Issue 2, pp 425–443 | Cite as

Macroseismic effects highlight site response in Rome and its geological signature

  • Paola Sbarra
  • Valerio De Rubeis
  • Emiliano Di Luzio
  • Marco Mancini
  • Massimiliano Moscatelli
  • Francesco Stigliano
  • Patrizia Tosi
  • Roberto Vallone
Original Paper

Abstract

A detailed analysis of the earthquake effects on the urban area of Rome has been conducted for the L’Aquila sequence, which occurred in April 2009, by using an online macroseismic questionnaire. Intensity residuals calculated using the mainshock and four aftershocks are analyzed in light of a very accurate and original geological reconstruction of the subsoil of Rome based on a large amount of wells. The aim of this work is to highlight ground motion amplification areas and to find a correlation with the geological settings at a subregional scale, putting in evidence the extreme complexity of the phenomenon and the difficulty of making a simplified model. Correlations between amplification areas and both near-surface and deep geology were found. Moreover, the detailed scale of investigation has permitted us to find a correlation between seismic amplification in recent alluvial settings and subsiding zones, and between heard seismic sound and Tiber alluvial sediments.

Keywords

Earthquakes Intensity residuals Urban geosciences Macroseismic effects Amplification areas 

Notes

Acknowledgments

Geological setting derives from the UrbiSIT Project (http://www.urbisit.it project manager: Dr. Gian Paolo Cavinato) funded for CNR-IGAG by the DPC (Italian Civil Protection National Service). Macroseismic analysis was supported by the DPC S1 and S3 Projects. The authors thank R. Lanari and M. Manunta (CNR-IREA) for Fig. 11b, G.P. Cavinato for useful discussions on the geological model, S. Barba and A. Rovelli for helpful advice and A. Pagliaroli (CNR-IGAG) for his important contribution on the physical and mechanical characterization of the geological units. E. Di Luzio contributed to the geological model of the city of Rome when he was employed by CNR-IGAG. D. Sorrentino is acknowledged for the system administration of the entire ICT architecture of http://www.haisentitoilterremoto.it (the INGV macroseismic web site) and for software development.

References

  1. Ambrosini S, Castenetto S, Cevolan F, Di Loreto E, Funiciello R, Liperi L, Molin D (1986) Risposta sismica dell’area urbana di Roma in occasione del terremoto del Fucino del 13-1-1915. Mem Soc Geol Italy 35:445–452Google Scholar
  2. Bakir BS, Ozkan MY, Ciliz S (2002) Effects of basin edge on the distribution of damage in 1995 Dinar, Turkey earthquake. Soil Dyn Earth Eng 22:335–345. doi: 101016/S0267-7261(02)00015-5 CrossRefGoogle Scholar
  3. Bard PY, Riepl-Thomas J (2000) Wave propagation in complex geological structures and their effects on strong ground motion. In: Kausel E, Manolis G (eds) Wave motion in earthquake engineering. WIT Press, Southampton, pp 37–95Google Scholar
  4. Bianchi Fasani G, Bozzano F, Cercato M (2011) The underground cavity network of south-eastern Rome city (Italy): an evolutionary geological model oriented to hazard assessment. Bull Eng Geol Environ 70:533–542. doi: 10.1007/s10064-011-0360-0 CrossRefGoogle Scholar
  5. Bozzano F, Andreucci A, Gaeta M, Salucci R (2000) A geological model of the buried Tiber River valley beneath the historical centre of Rome. Bull Eng Geol Environ 59:1–21. doi: 10.1007/s100640000051 CrossRefGoogle Scholar
  6. Bozzano F, Caserta A, Govoni A, Marra F, Martino S (2008) Static and dynamic characterization of alluvial deposits in the Tiber River Valley: new data for assessing potential ground motion in the City of Rome. J Geophys Res 113:1–21. doi: 10.1029/2006JB004873 Google Scholar
  7. Carlino S, Cubellis E, Marturano A (2009) The catastrophic 1883 earthquake at the island of Ischia (southern Italy): macroseismic data and the role of geological conditions. Nat Hazards 52:231–247. doi: 10.1007/s11069-009-9367-2 CrossRefGoogle Scholar
  8. Cifelli F, Donati S, Funiciello F, Tertulliani A (2000) High-density macroseismic survey in urban areas. Part 2: results for the City of Rome. Italy Bull Seism Soc Am 90:298–311. doi: 10.1785/0119990097 CrossRefGoogle Scholar
  9. CNR-IGAG (2009) Relazione geologico-tecnica e sismica sull’Area della Ricerca di Roma-RM1 Montelibretti. Internal CNR report, Montelibretti (Rome), p 9 and addendaGoogle Scholar
  10. Dengler LA, Dewey JW (1998) An intensity survey of households affected by the Northridge, California, earthquake of 17 January 1994. Bull Seism Soc Am 88:441–462Google Scholar
  11. Donati S, Funicello R, Rovelli A (1999) Seismic response in archaeological areas: the case-histories of Rome. J Appl Geophys 41:229–239CrossRefGoogle Scholar
  12. Donati S, Cifelli F, F Funicello (2008) Indagini macrosismiche ad alta densità per lo studio del risentimento sismico nella città di Roma. In: Funiciello et al. R (eds) La Geologia di Roma—dal centro storico alla periferia. Mem Descr Carta Geol D’It, vol 80. S.EL.CA., Firenze, pp 13–30Google Scholar
  13. Fäh D, Iodice C, Suhadolc P, Panza GF (1995) Application of numerical simulations for a tentative seismic microzonation of the city of Rome. Annali di Geofisica 38:607–615Google Scholar
  14. Florindo F, Karner DB, Marra F, Renne PR, Roberts AP, Weaver R (2007) Radioisotopic age constraints for glacial terminations IX and VII from aggradational sections of the Tiber River delta in Rome, Italy. Earth Planet Sci Lett 256:61–80. doi: 10.1016/j.epsl.2007.01.014 CrossRefGoogle Scholar
  15. Funiciello R, Praturlon A, Giordano G (2008) La Geologia di Roma—dal centro storico alla periferia. Mem Descr Carta Geol D’It 80:765, S.EL.CA., FirenzeGoogle Scholar
  16. Giammarinaro MS, Tertulliani A, Galli G, Leta M (2005) Investigation of Surface geology and intensity variability in the Palermo, Italy, urban area after the 6 September 2002 earthquake. Bull Seism Soc Am 95:2318–2327. doi: 10.1785/0120040214 CrossRefGoogle Scholar
  17. Giordano G, De Benedetti AA, Diana A, Diano G, Gaudioso F, Marasco F, Miceli M, Mollo S, Cas RAF, Funiciello R (2006) The Colli Albani mafic caldera (Roma, Italy): stratigraphy, structure and petrology. J Volcanol Geotherm Res 155:49–80. doi: 10.1016/j.jvolgeores.2006.02.009 CrossRefGoogle Scholar
  18. Hill DP, Fisher FG, Lahr KM, Coakley JM (1976) Earthquake sounds generated by body-wave ground motion. Bull Seismol Soc Am 66:1159–1172Google Scholar
  19. Karner DB, Marra F, Renne PR (2001) The history of the Monti Sabatini and Alban Hills volcanoes: groundwork for assessing volcanic-tectonic hazards for Rome. J Volcanol Geotherm Res 107:185–219CrossRefGoogle Scholar
  20. Kayano I (1990) Distribution of various effects and damages caused by earthquakes and of seismic intensities on the basis of questionnaire surveys: a newly developed group survey method. Bull Earthq Res Inst Univ Tokyo 65:463–519Google Scholar
  21. Lee SJ, Komatitsch D, Huang BS, Tromp J (2009) Effects of topography on seismic-wave propagation: an example from Northern Taiwan. Bull Seism Soc Am 99:314–325. doi: 10.1785/0120080020 CrossRefGoogle Scholar
  22. Manunta M, Marsella M, Zeni G, Sciotti M, Atzori S, Lanari R (2008) Two-scale surface deformation analysis via the SBAS-DInSAR technique: a case study of the city of Rome, Italy. Int J Remote Sens 29:1665–1684. doi: 10.1080/01431160701395278 CrossRefGoogle Scholar
  23. Margottini C, Molin D, Serva L (1992) Intensity versus ground motion: a new approach using Italian data. Eng Geol 33:45–58CrossRefGoogle Scholar
  24. Marra F, Rosa C, De Rita D, Funiciello R (1998) Stratigraphic and tectonic features of the middle pleistocene sedimentary and volcanic deposits in the area of Rome (Italy). Quat Int 47–48:51–63. doi: 10.1016/S1040-6182(97)00070-0 CrossRefGoogle Scholar
  25. Milli S (1997) Depositional settings and high-frequency sequence stratigraphy of the middle-upper pleistocene to holocene deposits of the Roman basin. Geologica Romana 33:99–136Google Scholar
  26. Molin D, Guidoboni E (1989) Effetto fonti, effetto monumenti a Roma: i terremoti dall’antichita` ad oggi. In: Guidoboni E (ed) I terremoti prima del Mille in Italia e nell’Area Mediterraneapp. ING, Bologna, pp 194–223Google Scholar
  27. Ocola L (2008) Procedure to estimate maximum ground acceleration from macroseismic intensity rating: application to the Lima, Perú data from the October-3-1974-8.1-Mw earthquake. Adv Geosci 14:93–98. doi: 10.5194/adgeo-14-93-2008 CrossRefGoogle Scholar
  28. Pagliaroli A, Quadrio B, Sanò T, Sabetta F, Castenetto S, Naso G, Moscatelli M, Lanzo G, Di Fiore V (2011) Risposta sismica locale dell’area archeologica comprendente il Colle Palatino, i Fori e il Colosseo. In: Cecchi R (ed) Roma archaeologia. Interventi per la tutela e la fruizione del patrimonio archeologico; terzo rapporto. Mondadori Electa S.p.A., MilanoGoogle Scholar
  29. Panou AA, Theodulidis N, Hatzidimitriou P, Stylianidis K, Papazachos CB (2005) Ambient noise horizontal-to-vertical spectral ratio for assessing site effects estimation and correlation with seismic damage distribution in urban environment: the case of city of Thessaloniki (Northern Greece). Soil Dyn Earthq Eng 25:261–274. doi: 10.1016/j.soildyn.2005.02.004 CrossRefGoogle Scholar
  30. Pasolini C, Gasperini P, Albarello D, Lolli B, D’Amico C (2008) The attenuation of seismic intensity in italy, part I: theoretical and empirical backgrounds. Bull Seism Soc Am 98:682–691CrossRefGoogle Scholar
  31. Pergalani F, De Franco R, Compagnoni M, Caielli G (2006) Evaluation of site effects using numerical and experimental analyses in Citta’ di Castello (Italy). Soil Dyn Earthq Eng 26:941–951. doi: 10.1016/j.soildyn.2006.02.003 CrossRefGoogle Scholar
  32. Raptakis D, Chavez-Garcia FJ, Makra K, Pitilakis K (2000) Site effects at Euroseistest-I. Determination of the valley structure and confrontation of observations with 1D analysis. Soil Dyn Earthq Eng 19:1–22. doi: 10.1016/S0267-7261(99)00025-1 CrossRefGoogle Scholar
  33. Raspa G, Moscatelli M, Stigliano F, Patera A, Folle D, Vallone R, Mancini M, Cavinato GP, Milli S, Costa JFCL (2008) Geotechnical characterization of the upper Pleistocene-Holocene alluvial deposits of Roma (Italy) by means of multivariate geostatistics: crossvalidation results. Eng Geol 101:251–268. doi: 10.1016/j.enggeo.2008.06.007 CrossRefGoogle Scholar
  34. Rovelli A, Malagnini L, Caserta A, Marra F (1995) Using 1-D and 2-D modelling of ground motion for seismic zonation criteria: results for the city of Rome. Annali di Geofisica 38:591–605Google Scholar
  35. Sbarra P, Tosi P, De Rubeis V (2009) Web based macroseismic survey in Italy: method validation and results. Nat Hazard 54:563–581. doi: 10.1007/s11069-009-9488-7 CrossRefGoogle Scholar
  36. Sbarra P, Tosi P, De Rubeis V, Rovelli A (2012) Influence of observation floor and building height on macroseismic intensity. Seismol Res Lett (in print)Google Scholar
  37. Seekins LC, Boatwright J (1994) Ground motion amplification, geology, and damage from the 1989 Loma Prieta earthquake in the City of San Francisco. Bull Seism Soc Am 84:16–30Google Scholar
  38. Semblat JF, Duval AM, Dangla P (2000) Numerical analysis of seismic wave amplification in Nice (France) and comparisons with experiments. Soil Dyn Earthq Eng 19:347–362. doi: 10.1016/S0267-7261(00)00016-6 CrossRefGoogle Scholar
  39. Semblat JF, Dangla P, Kham M, Duval AM (2002) Seismic site effects for shallow and deep alluvial basins: in-depth motion and focusing effect. Soil Dyn Earthq Eng 22:849–854. doi: 10.1016/S0267-7261(02)00107-0 CrossRefGoogle Scholar
  40. Semblat JF, Kham M, Parara E, Bard PY, Pitilakis K, Makra K, Raptakis D (2005) Seismic wave amplification: basin geometry vs soil layering. Soil Dyn Earthq Eng 25:529–538. doi: 10.1016/j.soildyn.2004.11.003 CrossRefGoogle Scholar
  41. Sieberg A (1930) Scala MCS (Mercalli-Cancani-Sieberg). Geologie der Erdbeben, Handbuch der Geophysik 2:552–555Google Scholar
  42. Signorini R (1939) Risultati geologici della perforazione eseguita dall’AGIP alla mostra autarchica del minerale nel Circo Massimo di Roma. Bollettino della Società Geologica Italiana 58:60–63Google Scholar
  43. Sousa ML, Oliveira CS (1997) Hazard mapping based on macroseismic data considering the influence of geological conditions. Nat Hazards 14:207–225. doi: 10.1007/BF00128267 CrossRefGoogle Scholar
  44. Tertulliani A, Tosi P, De Rubeis V (1996) Local seismicity in Rome (Italy): recent results from macroseismic evidences. Annali di Geofisica 39:1235–1240Google Scholar
  45. Toshinawa T, Taber JJ, Berill JB (1997) Distribution of ground-motion intensity inferred from questionnaire survey, earthquake recordings, and microtremor measurements—a case study in Christchurch, New Zealand, during the 1994 Arthurs Pass Earthquake. Bull Seism Soc Am 87:356–369Google Scholar
  46. Tosi P, De Rubeis V, Tertulliani A, Gasparini C (2000) Spatial patterns of earthquake sounds and seismic source geometry. Geophys Res Lett 27:2749–2752. doi: 10.1029/2000GL011377 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Paola Sbarra
    • 1
  • Valerio De Rubeis
    • 1
  • Emiliano Di Luzio
    • 2
  • Marco Mancini
    • 3
  • Massimiliano Moscatelli
    • 3
  • Francesco Stigliano
    • 3
  • Patrizia Tosi
    • 1
  • Roberto Vallone
    • 3
  1. 1.Istituto Nazionale di Geofisica e Vulcanologia, RomaRomeItaly
  2. 2.Istituto per le Tecnologie Applicate ai Beni Culturali (ITABC)Consiglio Nazionale delle Ricerche Area della Ricerca Roma RM1—MontelibrettiMonterotondo Stazione, RomeItaly
  3. 3.Istituto di Geologia Ambientale e Geoingegneria (IGAG)Consiglio Nazionale delle Ricerche Area della Ricerca di Roma RM 1—MontelibrettiMonterotondo Stazione, RomeItaly

Personalised recommendations