Natural Hazards

, Volume 67, Issue 3, pp 1025–1043 | Cite as

Impact assessment of projected climate change on the hydrological regime in the SE Alps, Upper Soča River basin, Slovenia

  • Mitja Janža
Original Paper


According to climate change projections, the Alps will be one of the most affected regions in Europe. A basis for adaptation measures to climate changes is the quantification of the impact. This study investigates the impact of projected climate change on the hydrological cycle in the Upper Soča River basin. It is based on the use of climate model data as input for hydrological modelling. The climatic input data used were generated by a global climate model (IPCC A1B emission scenario) and downscaled for local use. Hydrological modelling was performed using the distributed hydrological model MIKE SHE. The simulated impact was quantified by comparing results of the hydrological modelling for the control period (1971–2000) and different scenario periods (2011–2040, 2041–2070, 2071–2100). The climate projections show an increase in the average temperature (+0.9, +2.3, +3.8°C) and negligible changes in average precipitation amounts in the scenario periods. More distinctive are changes in the temporal pattern of mean monthly values (up to +5.2°C and ±45% for precipitation), which result in warmer and wetter winters and hotter and drier summers in the scenario periods. The projected rise in temperature is reflected in the increased actual evapotranspiration, the reduction of snow amount and summer groundwater recharge. Changes of monthly and period average discharges follow the trends of the meteorological variables. Changes in precipitation patterns have a major influence on the projected hydrological cycle and are the most important source of uncertainty. Estimated extreme flows indicated increased hazards related to floods, especially in the near-future scenario period, while in the far future scenario period, distinctive drought conditions are projected.


Distributed hydrological modelling Climate change Alps Soča River basin 



This research was supported by the Alpine Space Programme within the framework of project AdaptAlp and by the Slovenian Research Agency under the Research programme P1-0020 (D). The climate model data used in this work were funded by the EU FP6 Integrated project ENSEMBLES (Contract number 505539), whose support is gratefully acknowledged. The author would like to thank: Jane Korck (LfU) for commenting the manuscript and correcting the language; Peter Krahe and Enno Nilson (BfG) for providing the climate model data; Petra Megič (GeoZS) and Dejan Šram for help with data analysis; and two anonymous reviewers for their constructive comments and suggestions.


  1. Andersen J, Refsgaard JC, Jensen KH (2001) Distributed hydrological modelling of the Senegal River Basin—model construction and validation. J Hydrol 247(3–4):200–214CrossRefGoogle Scholar
  2. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin JM, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27(1):17–46CrossRefGoogle Scholar
  3. Bard A, Renard B, Lang M (2011) The AdaptAlp Dataset (AdaptAlp WP4 Report). Cemagref, LyonGoogle Scholar
  4. Bavec M, Pohar V (2009) Quaternary. In: Pleničar M, Ogorelec B, Novak M (eds) The geology of Slovenia. Geološki zavod Slovenije, Ljubljana, pp 441–464Google Scholar
  5. Bavec M, Tulaczyk SM, Mahan SA, Stock GM (2004) Late Quaternary glaciation of the Upper Soca River Region (Southern Julian Alps, NW Slovenia). Sed Geol 165(3–4):265–283CrossRefGoogle Scholar
  6. Boyer C, Chaumont D, Chartier I, Roy AG (2010) Impact of climate change on the hydrology of St. Lawrence tributaries. J Hydrol 384(1–2):65–83Google Scholar
  7. Buser S (1987) Osnovna geološka karta SFRJ, list Tolmin in Videm, 1:100,000 (Basic geological map of Yugoslavia, Map Tolmin and Udine, scale 1:100,000). Zvezni geološki zavod, BelgradeGoogle Scholar
  8. Cegnar T (ed) (1996) Climate of Slovenia. Hydrometeorological Institute of Slovenia, LjubljanaGoogle Scholar
  9. Cegnar T (2009) Is there a need to prepare for potential droughts even in Soča river basin? (Slovenia and Italy). In: Regional climate change and adaptation. The Alps facing the challenge of changing water resources (Report 8/2009). EEA, CopenhagenGoogle Scholar
  10. Cegnar T, Mekinda Majaron T, Nadbath M, Dolinar M, Vertačnik G, Ovsenik-Jeglič T, Bertalanič R, Vičar Z (2006) Živeti s podnebnimi spremembami. Agencija RS za okolje, LjubljanaGoogle Scholar
  11. DHI (2004) MIKE 11–a modelling system for rivers and channels: reference manual. DHI Water & Environment, HorsholmGoogle Scholar
  12. DHI (2005) MIKE SHE–an integrated hydrological modelling system: user documentation. DHI Water & Environment, HorsholmGoogle Scholar
  13. Dolinar M, Frantar P, Hrvatin M (2008) Vpliv podnebne spremenljivosti na pretočne in padavinske režime Slovenije. Paper presented at the Strategija upravljanja z vodami v luči podnebnih sprememb, vol 19. Mišičev vodarski dan, MariborGoogle Scholar
  14. Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031. doi: 10.1029/91WR02985 CrossRefGoogle Scholar
  15. Goderniaux P, Brouyčre S, Fowler HJ, Blenkinsop S, Therrien R, Orban P, Dassargues A (2009) Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves. J Hydrol 373(1–2):122–138CrossRefGoogle Scholar
  16. Görgen K, Beersma J, Buiteveld H, Brahmer G, Carambia M, Keizer Od, Krahe P, Nilson E, Lammersen R, Perrin C, Volken D (2010) Assessment of climate change impacts on discharge in the River Rhine Basin. Results of the RheinBlick2050 project. Accessed 5 November 2010
  17. Gosling SN, Taylor RG, Arnell NW, Todd MC (2011) A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrol Earth Syst Sci 15(1):279–294. doi: 10.5194/hess-15-279-2011 CrossRefGoogle Scholar
  18. Graham DN, Butts MB (2005) Flexible, integrated watershed, modelling with MIKE SHE. In: Singh VP, Frevert DK (eds) Watershed models. CRC Press, Boca Raton, pp 245–272Google Scholar
  19. Hansen S, Jensen HE, Nielsen NE, Svendsen H (1991) Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Nutr Cycl Agroecosyst 27(2):245–259. doi: 10.1007/bf01051131 Google Scholar
  20. Hollweg H, Fast I, Hennemuth B, Keup-Thiel E, Lautenschlager M, Legutke S, Schubert M, Wunram C (2008) Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios. Max Planck Institute for Meteorology, HamburgGoogle Scholar
  21. Hughes DA, Kingston DG, Todd MC (2011) Uncertainty in water resources availability in the Okavango River basin as a result of climate change. Hydrol Earth Syst Sci 15(3):931–941. doi: 10.5194/hess-15-931-2011 CrossRefGoogle Scholar
  22. Janež J (2002) Karst Springs in the Upper Soča Valley. Geologija 45(2):393–400CrossRefGoogle Scholar
  23. Kingston DG, Taylor RG (2011) Sources of uncertainty in climate change impacts on river discharge and groundwater in a headwater catchment of the Upper Nile Basin, Uganda. Hydrol Earth Syst Sci 14(7):1297–1308. doi: 10.5194/hess-14-1297-2010 CrossRefGoogle Scholar
  24. Kingston DG, Thompson JR, Kite G (2011) Uncertainty in climate change projections of discharge for the Mekong River Basin. Hydrol Earth Syst Sci 15(5):1459–1471. doi: 10.5194/hess-15-1459-2011 CrossRefGoogle Scholar
  25. Knez M, Kranjc A (2009) Karst. In: Pleničar M, Ogorelec B, Novak M (eds) The geology of Slovenia. Geološki zavod Slovenije, Ljubljana, pp 563–574Google Scholar
  26. Koblencen M, Pristov J (1998) Surface streams and water balance of Slovenia. MOP-Hidrometeorološki zavod Republike Slovenije, LjubljanaGoogle Scholar
  27. Koutsoyiannis D (2006) Nonstationarity versus scaling in hydrology. J Hydrol 324(1–4):239–254CrossRefGoogle Scholar
  28. Krahe P, Carambia M, Klein B, Rachimow C, Horsten T, Schickowski G, Kling H, Fuchs M (2011) Preprocessing and application of the regional climate projection for hydrological impact studies in the Alpine Region. Bundesanstalt für Gewässerkunde (BfG), KoblenzGoogle Scholar
  29. Kristensen KJ, Jensen SE (1975) A model for estimating actual evapotranspiration from potential evapotranspiration. Nord Hydrol 6:170–188Google Scholar
  30. Kristensen M, Andersson U, Sorensen HR, Refsgaard A (2000) Water resources management model for Ljubljansko Polje and Ljubljansko Barje—model report. DHI Water & Environment, HorsholmGoogle Scholar
  31. Lautenschlager M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2008) Climate simulation with CLM, climate of the 20th century, data stream 3: European region MPI-M/MaD. World Data Center for Climate. Accessed 5 April 2010
  32. Liniger H, Weingartner R, Grosjean M (1998) Mountains of the world: water towers for the 21st century. Haupt Verlag, BernGoogle Scholar
  33. Madsen H (2003) Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Adv Water Resour 26(2):205–216CrossRefGoogle Scholar
  34. McMichael CE, Hope AS, Loaiciga HA (2006) Distributed hydrological modelling in California semi-arid shrublands: MIKE SHE model calibration and uncertainty estimation. J Hydrol 317(3–4):307–324CrossRefGoogle Scholar
  35. Meglič P (2011a) Spatial interpolation of meteorological data in Upper Soča river basin (AdaptAlp WP4 Report). Geological Survey of Slovenia, LjubljanaGoogle Scholar
  36. Meglič P (2011b) Report on impact of climate change on drinking water resources in Upper Soča River basin (AdaptAlp WP4 Report). Geological Survey of Slovenia, LjubljanaGoogle Scholar
  37. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-KÜBler K, Bissolli P, BraslavskÁ OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, MÅGe F, Mestre A, Nordli Ø, PeÑUelas J, Pirinen P, RemiŠOvÁ V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust ANA (2006) European phenological response to climate change matches the warming pattern. Global Change Biol 12(10):1969–1976. doi: 10.1111/j.1365-2486.2006.01193.x CrossRefGoogle Scholar
  38. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290CrossRefGoogle Scholar
  39. Nilson E, Krahe P, Willems W, Görgen K (2011) Climate change projections for the Greater Alpine Area (AdaptAlp WP4 Report). Bundesanstalt für Gewässerkunde (BfG), KoblenzGoogle Scholar
  40. Ogrin D (1998) Podnebje. In: Fridl J, Kladnik D, Orožen Adamič M, Perko D (eds) Geografski atlas Slovenije, Država v prostoru in času. DZS, Ljubljana, pp 110–111Google Scholar
  41. Oudin L, Hervieu F, Michel C, Perrin C, Andréassian V, Anctil F, Loumagne C (2005) Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2-towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. J Hydrol 303(1–4):290–306CrossRefGoogle Scholar
  42. Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. PART I: model description. Max Planck Institute for Meteorology, HamburgGoogle Scholar
  43. Sahoo GB, Ray C, De Carlo EH (2006) Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream. J Hydrol 327(1–2):94–109CrossRefGoogle Scholar
  44. Schaap MG, Leij FJ, van Genuchten MT (2001) ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251(3–4):163–176CrossRefGoogle Scholar
  45. Schaedler B, Weingartner R (2010) Impact of climate change on water resources in the Alpine Regions of Switzerland In: Bundi U (ed) Alpine Waters, Hdb Env Chem, vol 6. Springer, Berlin, pp 59–69. doi: 10.1007/978-3-540-88275-6_3
  46. Schulla J, Jasper K (2007) Model description WaSim-ETH (water balance Simulation Model ETH). Accessed 5 July 2010
  47. Steele-Dunne S, Lynch P, McGrath R, Semmler T, Wang S, Hanafin J, Nolan P (2008) The impacts of climate change on hydrology in Ireland. J Hydrol 356(1–2):28–45CrossRefGoogle Scholar
  48. Stisen S, Jensen KH, Sandholt I, Grimes DIF (2008) A remote sensing driven distributed hydrological model of the Senegal River basin. J Hydrol 354(1–4):131–148CrossRefGoogle Scholar
  49. Stoll S, Hendricks Franssen HJ, Butts M, Kinzelbach W (2011) Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods. Hydrol Earth Syst Sci 15(1):21. doi: 10.5194/hess-15-21-2011
  50. Thodsen H (2007) The influence of climate change on stream flow in Danish rivers. J Hydrol 333(2–4):226–238CrossRefGoogle Scholar
  51. Thorne R (2011) Uncertainty in the impacts of projected climate change on the hydrology of a subarctic environment: Liard River Basin. Hydrol Earth Syst Sci 15(5):1483–1492. doi: 10.5194/hess-15-1483-2011 CrossRefGoogle Scholar
  52. Todd MC, Taylor RG, Osborn TJ, Kingston DG, Arnell NW, Gosling SN (2011) Uncertainty in climate change impacts on basin-scale freshwater resources a preface to the special issue: the QUEST-GSI methodology and synthesis of results. Hydrol Earth Syst Sci 15(3):1035–1046. doi: 10.5194/hess-15-1035-2011 CrossRefGoogle Scholar
  53. van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, ExeterGoogle Scholar
  54. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  55. Viviroli D, Weingartner R (2004) The hydrological significance of mountains: from regional to global scale. Hydrol Earth Syst Sci 8(6):1017–1030CrossRefGoogle Scholar
  56. Wehren B, Weingartner R, Schaedler B, Viviroli D (2010) General characteristics of Alpine Waters. In: Bundi U (ed) Alpine waters, Hdb Env Chem, vol 6. Springer, Berlin, pp 17–58. doi: 10.1007/978-3-540-88275-6_2
  57. Weingartner R, Viviroli D, Schädler B (2007) Water resources in mountain regions: a methodological approach to assess the water balance in a highland-lowland-system. Hydrol Process 21(5):578–585CrossRefGoogle Scholar
  58. Xu H, Taylor RG, Xu Y (2011) Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the Yangtze and Yellow River Basins, China. Hydrol Earth Syst Sci 15(1):333–344. doi: 10.5194/hess-15-333-2011 CrossRefGoogle Scholar
  59. Zhang H, Hiscock KM (2010) Modelling the impact of forest cover on groundwater resources: a case study of the Sherwood Sandstone aquifer in the East Midlands, UK. J Hydrol 392(3–4):136–149CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Geological Survey of SloveniaLjubljanaSlovenia

Personalised recommendations