Natural Hazards

, Volume 58, Issue 2, pp 705–729 | Cite as

The structural vulnerability in the framework of natural hazard risk analyses and the exemplary application for storm loss modelling in Tyrol (Austria)

  • Matthias HuttenlauEmail author
  • Johann Stötter
Original Paper


In the context of natural hazard-related risk analyses, different concepts and comprehensions of the term risk exist. These differences are mostly subjected to the perceptions and historical backgrounds of the different scientific disciplines and results in a multitude of methodological concepts to analyse risk. The target-oriented selection and application of these concepts depend on the specific research object which is generally closely connected to the stakeholders’ interests. An obvious characteristic of the different conceptualizations is the immanent various comprehensions of vulnerability. As risk analyses from a natural scientific-technical background aim at estimating potential expositions and consequences of natural hazard events, the results can provide an appropriate decision basis for risk management strategies. Thereby, beside the preferably addressed gravitative and hydrological hazards, seismo-tectonical and especially meteorological hazard processes have been rarely considered within multi-risk analyses in an Alpine context. Hence, their comparative grading in an overall context of natural hazard risks is not quantitatively possible. The present paper focuses on both (1) the different concepts of the natural hazard risk and especially their specific expressions in the context of vulnerability and (2) the exemplary application of the natural scientific-technical risk concepts to analyse potential extreme storm losses in the Austrian Province of Tyrol. Following the corresponding general risk concept, the case study first defines the hazard potential, second estimates the exposures and damage potentials on the basis of an existing database of the stock of elements and values, and third analyses the so-called Extreme Scenario Losses (ESL) considering the structural vulnerability of the potentially affected elements at risk. Thereby, it can be shown that extreme storm events can induce losses solely to buildings and inventory in the range of EUR 100–150 million in Tyrol. However, in an overall context of potential extreme natural hazard events, the storm risk can be classified with a moderate risk potential in this province.


Risk analysis Structural vulnerability Extreme scenario losses Meteorological hazards Storm 


  1. Albeverio S, Jentsch V, Kantz H (eds) (2005) Extreme events in nature and society. Springer, HeidelbergGoogle Scholar
  2. Albrecht A, Schindler D, Grebhan K, Kohnle U, Mayer H (2009) Sturmaktivität über der nordatlantisch-europäischen Region vor dem Hintergrund des Klimawandels—Eine Literaturübersicht. Allgemeine Forst- und Jagdzeitung 180:109–118Google Scholar
  3. Alexander D (2005) Vulnerability to landslides. In: Glade T, Anderson M, Crozier M (eds) Landslide hazard and risk. Wiley, Chichester, pp 175–198Google Scholar
  4. Allen K (2003) Vulnerability reduction and the community-based approach. In: Pelling M (ed) Natural disasters and development in a globalising world. Routledge, London, pp 170–184Google Scholar
  5. Amt der Tiroler Landesregierung (2009) Statistisches Handbuch für Tirol 2009. Amt der Tiroler Landesregierung, InnsbruckGoogle Scholar
  6. Angermann A (1993) Sturmszenarien und Schadenshäufigkeit von Stürmen über Deutschland. Diploma thesis, University of CologneGoogle Scholar
  7. Banse G, Bechmann G (1998) Interdisziplinäre Risikoforschung. Eine Bibliographie. Westdeutscher Verlag GmbH, WiesbadenGoogle Scholar
  8. Barroca B, Bernadara P, Mouchel JM, Huber G (2006) Indicators for identification of urban flooding vulnerability. Nat Hazards Earth Syst Sci 6:553–561CrossRefGoogle Scholar
  9. Beck U (1986) Risikogesellschaft—Auf dem Weg in eine andere Moderne. Suhrkamp, Frankfurt aMGoogle Scholar
  10. Beck U (2007) Weltrisikogesellschaft—Auf der Suche nach der verlorenen Sicherheit. Suhrkamp, Frankfurt aMGoogle Scholar
  11. Bengtsson L, Hodges KI, Roeckner E, Brokopf R (2006) On the natural variability of the pre-industrial European climate. Clim Dyn 27:743–760CrossRefGoogle Scholar
  12. Bertrand D, Naaim M, Brun M (2010) Physical vulnerability of reinforced concrete building impacted by snow avalanches. Nat Hazards Earth Syst Sci 10:1531–1545CrossRefGoogle Scholar
  13. Borter P (1999) Risikoanalyse bei gravitativen Naturgefahren. Methoden. Swiss Agency for the Environment, Forests and Landscape BUWAL, BernGoogle Scholar
  14. Brasseur O (2001) Development and application of a physical approach to estimating wind gusts. Mon Weather Rev 129:5–25CrossRefGoogle Scholar
  15. Chock G (2005) Modelling of hurricane damage for Hawaii residential construction. J Wind Eng Ind Aerod 93:603–622CrossRefGoogle Scholar
  16. Cutter S (1996) Vulnerability to environmental hazards. Prog Human Geog 20:529–539CrossRefGoogle Scholar
  17. Cutter S (2003) The vulnerability of science and the science of vulnerability. Ann Assoc Am Geogr 93:1–12CrossRefGoogle Scholar
  18. Davenport AG, Grimmond CSB, Oke TR, Wieringa J (2000) Estimating the roughness of cities and scattered country. Proceedings of the 12th conference on applied climatology, Asheville, 8–11 May 2000, pp 96–99Google Scholar
  19. Dikau R, Weichselgartner J (2005) Der unruhige Planet—Der Mensch und die Naturgewalten. Wissenschaftliche Buchgesellschaft, WiesbadenGoogle Scholar
  20. Dobesch H, Kury Y (1997) Wind Atlas for the Central European countries Austria, Croatia, Czech Republic, Hungary, Slovak Republic and Slovenia. Beiträge zur Meteorologie und Geophysik, HeftGoogle Scholar
  21. Dorland C, Tol R, Palutikof J (1999) Vulnerability of the Netherlands and Northwest Europe to storm and damage under climate change. Clim Change 43:513–535CrossRefGoogle Scholar
  22. Dotzek N, Berz G, Rauch E, Peterson RE (2000) Die Bedeutung von Johannes P. Letzmanns „Richtlinien zur Erforschung von Tromben, Tornados, Wasserhosen und Kleintromben” für die heutige Tornadoforschung. Meteor Z 9:165–174Google Scholar
  23. Douglas J (2007) Physical vulnerability modelling in natural hazard risk assessment. Nat Hazards Earth Syst Sci 7:283–288CrossRefGoogle Scholar
  24. EEA European Environmental Agency (ed) (2006) Land accounts for Europe 1990–2000—towards integrated land and ecosystem accounting. EEA report no 11/2006, EEA, CophenhagenGoogle Scholar
  25. Egli T (2000) Risikobewertung: Aufgabe von Sicherheitsbehörden und Legitimation von Betroffenen. Proceedings of the 9th congress INTERPRAEVENT, Villach, 26–30 June 2000, pp 241–251Google Scholar
  26. Felgentreff C, Dombrovsky WR (2008) Hazard-, Risiko- und Katastrophenforschung. In: Felgentreff C, Glade T (eds) Naturrisiken und Sozialkatastrophen. Springer, Heidelberg, pp 13–29Google Scholar
  27. Finnis J, Holland MM, Serrez MC, Cassano JJ (2007) Response of northern hemisphere extratropical cyclone activity and associated precipitation to climate change, as represented by the community climate system model. J Geophys Res. doi: 10.1029/2006JG000286
  28. Friedmann D (1984) Natural hazard assessment for an insurance program. Geneva Pap Risk Ins 9:57–128Google Scholar
  29. Fuchs S (2009) Susceptibility versus resilience to mountain hazards in Austria—paradigms of vulnerability revisited. Nat Hazards Earth Syst Sci 9:337–352CrossRefGoogle Scholar
  30. Fuchs S, Heiss K, Hübl J (2007) Towards an empirical vulnerability function for use in debris flow risk assessment. Nat Hazards Earth Syst Sci 7:495–506CrossRefGoogle Scholar
  31. Gabl K (2008) Maximum credible gust wind speeds in Tyrol. Internal report and personal communication. ZAMG—Central Institute for Meteorology and Geodynamics, InnsbruckGoogle Scholar
  32. Glade T (2003) Vulnerability assessment in landslide risk analysis. Die Erde 134:123–146Google Scholar
  33. Goyette S, Beniston M, Caya D, Laprise R, Jungo P (2001) Numerical investigation of an extreme storm with the Canadian regional climate model: the case study of windstorm VIVIAN, Switzerland, February 27, 1990. Clim Dynam 18:145–168CrossRefGoogle Scholar
  34. Grossi P, Kunreuther H, Windeler D (2005) An introduction to Catastroph models and insurance. In: Grossi P, Kunreuther H (eds) Catastrophe modeling: a new approach to managing risk. Springer, Heidelberg, pp 23–42CrossRefGoogle Scholar
  35. Gruber C (2005) Evaluierung von modellierten Windfeldern im Alpenraum. Diploma thesis, University of ViennaGoogle Scholar
  36. Hart G (1976) Natural hazards: Tornado, Hurrican, severe wind loss models. Technical report NTIS no. PB 294594/AS, National Science Foundation, Redondo BeachGoogle Scholar
  37. Heinimann HR, Hollenstein K, Kienholz H, Krummenacher B (1998) Methoden zur Analyse und Bewertung von Naturgefahren. Swiss Agency for the Environment, Forests and Landscape BUWAL, BernGoogle Scholar
  38. Heneka P (2007) Schäden durch Winterstürme—das Schadensrisiko von Wohngebäuden in Baden-Württemberg. Dissertation, University of KarlsruheGoogle Scholar
  39. Heneka P, Buck B (2008) A damage model fort he assessment of storm damage to buildings. Eng Struct 30:3603–3609CrossRefGoogle Scholar
  40. Heneka P, Hofherr T, Ruck B, Kottmeier C (2006) Winter storm risk of residential structures—model development and application to the German state of Baden-Württemberg. Nat Hazards Earth Syst Sci 6:721–733CrossRefGoogle Scholar
  41. Hofherr T (2007) Countrywide storm hazard map for Germany. Proceedings of the 8 forum DKKV/CEDIM: disaster reduction in climate change, 15–16 October 2007. Available via Accessed 10 May 2008
  42. Hollenstein K (1997) Analyse, Bewertung und Management von Naturrisiken. vdf, ZurichGoogle Scholar
  43. Hollenstein K (2005) Reconsidering the risk assessment concept: standardizing the impact description as a building block for vulnerability assessment. Nat Hazards Earth Syst Sci 5:301–307CrossRefGoogle Scholar
  44. Hollenstein K, Bieri O, Stückelberger J (2002) Modellierung der Vulnerabilität von Schadenobjekten gegenüber Naturgefahrenprozessen. ETHZ Forstliches Ingenieurwesen, ZurichGoogle Scholar
  45. Huang Z, Rosowsky D, Sparks P (2000) Hurricane hazard assessment system for residential structures in South Carolina. Environ Eng Geosci 7:57–65CrossRefGoogle Scholar
  46. Hurrel JW, Kushnir Y, Ottersen G, Visbeck M (2001) An overview on the north Atlantic oscillation. In: Hurrel JW, Kushnir Y, Ottersen G, Visbeck M (eds) The north Atlantic oscillation: climatic significance and environmental impacts. American Geophysical Union, Washington, pp 1–36Google Scholar
  47. Huttenlau M, Stötter J (2008) Ermittlung des monetären Werteinventars als Basis von Analysen naturgefahreninduzierter Risiken in Tirol (Österreich). Geographica Helvetica 2:85–93Google Scholar
  48. Huttenlau M, Stötter J (2009) Kumulatives Schadenpotenzial von worst-case Szenarien in Tirol. Final project report, alpS—Centre for Natural Hazard and Risk Management, InnsbruckGoogle Scholar
  49. IRGC International Rsik Governance Council (2005) White paper on risk governance towards an integrative approach. Available via Accessed 20 Feb 2011
  50. Jakobeit J, Wanner H, Luterbacher J, Beck C, Philipp A, Sturm K (2003) Atmospheric circulation variability in the north-Atlantic-European area since the mid-seventeenth century. Clim Dyn 20:341–352Google Scholar
  51. Kalthoff N, Bischoff-Gauß I, Friedler F (2003) Regional effects of large-scale extreme wind events over orographically structured terrain. Theor Appl Climatol 74:53–67CrossRefGoogle Scholar
  52. Kasperski M (2002) A new wind zone map of Germany. J Wind Eng Ind Aerod 90:1271–1287CrossRefGoogle Scholar
  53. Kasperson RE, Renn O, Slovic P, Brown HS, Emel J, Goble R, Kasperson JX, Ratick S (1988) The social amplification of risk: a conceptual framework. Risk Anal 8:177–187CrossRefGoogle Scholar
  54. Katz R (2002) Stochastic modelling of hurricane damage. J Appl Meteorol 47:754–762CrossRefGoogle Scholar
  55. Kienholz H (2005) Analyse und Bewertung alpiner Naturgefahren. Eine Daueraufgabe im Rahmen des integralen Risikomanagements. Geographica Helvetica 1:3–15Google Scholar
  56. Klawa M (2001) Extreme Sturmereignisse in Deutschland: Entwicklung, Zusammenhang mit der nordatlantischen Oszillation und Auswirkungen auf die Versicherungswirtschaft. Dissertation, University of CologneGoogle Scholar
  57. Klawa M, Ulbricht U (2003) A model for the estimation of storm losses and the identification of severe winter storms in Germany. Nat Hazard Earth Syst 3:725–732CrossRefGoogle Scholar
  58. Lang K (2002) Seismic vulnerability of existing buildings. Dissertation, ETH ZurichGoogle Scholar
  59. Leckebusch GC, Ulbricht U (2004) On the relationship between cyclones and extreme windstorm events over Europe under climate change. Global Planet Change 44:181–193CrossRefGoogle Scholar
  60. Leckebusch GC, Koffi B, Ulbrich U, Pinto JG, Spangehl T, Zacharias S (2006) Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Climate Res 31:59–74CrossRefGoogle Scholar
  61. Leicaster R, Reardon G (1976) A statistical analyses of the structural damage by cyclone Tracy. Civil Eng Trans 18:50–54Google Scholar
  62. Leicaster R, Bubb C, Dorman C, Beresdorf F (1979) An assessment of potential cyclone damage to dwellings in Australia. Proceedings of the 5th international conference on wind engineering, Fort Collins, 8–14 July 1979, pp 23–36Google Scholar
  63. Lotteraner C (2009) Synoptisch-klimatologische Auswertung von Windfeldern im Alpenraum. Dissertation, University of ViennaGoogle Scholar
  64. Makkonen L (2008) Problems in the extreme value analysis. Struct Saf 30:405–419CrossRefGoogle Scholar
  65. Marshall J, Kushnir Y, Battistic D, Chang P, Czaja A, Dickson R, Hurrel J, McCartney M, Saravanan R, Visbeck M (2001) North atlantic climate variability: phenomena, impacts and mechanisms, review. Int J Climatol 21:1863–1898 CrossRefGoogle Scholar
  66. Müller-Mahn D (2005) Von “Naturkatastrophen” zu “Complex Emergencies”—Die Entwicklung integrativer Forschungsansätze im Dialog mit der Praxis. In: Müller-Mahn D, Wardenga U (eds) Möglichkeit und Grenzen integrativer Forschungsansätze in Physischer Geographie und Humangeographie. Leibnitz Institut für Länderkunde, Leipzig, pp 69–78Google Scholar
  67. Müller-Mahn D (2007) Perspektiven der geographischen Risikoforschung. Geographische Rundschau 10:4–11Google Scholar
  68. Munich Re (1993) Winter storms in Europe: analysis of 1990 losses and future loss potentials. Münchener Rückversicherungsgesellschaft, MunichGoogle Scholar
  69. Munich Re (2001) Winter storms in Europe (II): analysis of 1999 losses and loss potentials. Münchener Rückversicherungsgesellschaft, MunichGoogle Scholar
  70. Murlidharan T, Durgaprasad J, Appa Rao T (1997) Knowledge-based expert system for damage assessment and vulnerability analysis of structures subjected to cyclones. J Wind Eng Ind Aerod 72:479–491CrossRefGoogle Scholar
  71. Notfallvorsorge (2010) Themenheft: Bedrohung und Gefährdung in Europa—damit müssen wir rechnen. Die Zeitschrift für Bevölkerungsschutz und Katastrophenhilfe, Walhalla Fachverlag, RegensburgGoogle Scholar
  72. Palutikof JP, Brabson BB, Lister DH, Adcock ST (1999) A review of methods to calculate extreme winds. Meteorol Appl 6:19–32CrossRefGoogle Scholar
  73. Penning-Rowsell EC, Johnson C, Tunstall S, Morris J, Coker A, Green C (2003) The benefits of flood and coastal defence: technique and data for 2003. Middlesex University Press, MiddlesexGoogle Scholar
  74. Perrin O, Rootzén H, Taesler R (2006) A discussion of statistical methods used to estimated extreme wind speeds. Theor Appl Climatol 85:203–215CrossRefGoogle Scholar
  75. Pinelli J, Simiu E, Gurley K, Subramanian C, Zhang L, Cope A (2004) Hurricane damage prediction model for residential structures. J Struct Eng 130:1685–1691CrossRefGoogle Scholar
  76. Pinot JG, Fröhlich L, Leckebusch GC, Ulbrich U (2007) Property loss potentials for European mid-latitude storms in a changing climate. Geophys Res Lett 34. doi: 10.1029/2006GL027663
  77. Pohl J (2008) Die Entstehung der geographischen Hazardforschung. In: Felgentreff C, Glade T (eds) Naturrisiken und Sozialkatastrophen. Springer, Heidelberg, pp 47–62Google Scholar
  78. Renn O (2008a) Concepts of risk: an interdisciplinary review. Part 1: disciplinary risk concepts. GAiA 17(2):50–66Google Scholar
  79. Renn O (2008b) Concepts of risk: an interdisciplinary review. Part 2: integrative approaches. GAiA 17(2):196–204Google Scholar
  80. Rootzén H, Tajvidi N (1997) Extreme value statistic and wind storm losses: a case study. Scand Act J 1:70–94Google Scholar
  81. Sanders D (2002) The management of losses arising from extreme events. Convention General Insurance Study Group GIRO, LondonGoogle Scholar
  82. Sill B, Kozlowski R (1997) Analysis of storm-damage factors for low-rise structures. J Perf Construc Fac 11:168–177CrossRefGoogle Scholar
  83. Smith K, Ward R (1998) Floods: physical processes and human impacts. Wiley, ChichesterGoogle Scholar
  84. Spichtig S, Bründl M (2008) Verletzlichkeit bei gravitativen Naturgefahren—eine Situationsanalyse. National Platform for Natural Hazards PLANAT, BernGoogle Scholar
  85. Straßburger D (2006) Risk management and solvency: mathematical method in theory and practise. Dissertation, University of OldenburgGoogle Scholar
  86. Stull RB (2000) Meteorology for scientists and engineers. Brooks/Cole, Pacific GroveGoogle Scholar
  87. Swiss Re (1993) Stürme über Europa—Schäden und Szenarien. Schweizer Rückversicherungs-Gesellschaft, ZurichGoogle Scholar
  88. Thywissen K (2006) Components of risk—a comparative glossary. Source education-publication series of UNU-EHS No 2/2006, UNU Institute for Environment and Human Security, BonnGoogle Scholar
  89. Troen I, Petersen EL (1989) European wind atlas. Risø National Labratory, RoskildeGoogle Scholar
  90. Ulbricht U, Fink AH, Klawa M, Pinto JG (2001) Three extreme storms over Europe in December 1999. Weather 56:70–80Google Scholar
  91. Unanwa C, McDonald J, Metha K, Smith D (2000) The development of wind damage bands for buildings. J Wind Eng Ind Aerod 84:119–149CrossRefGoogle Scholar
  92. Varnes D (1984) Landslide hazard zonation: a review of principles and practice. UNESCO, ParisGoogle Scholar
  93. WBGU German Advisory Council on Global Change (2000) World in transition: strategies for managing global environmental risks. Flagship report 1998. Springer, BerlinGoogle Scholar
  94. Weichhart P (2007) Risiko—Vorschläge zum Umgang mit einem schillernden Begriff. Berichte zur deutschen Landeskunde 81(3):201–214Google Scholar
  95. Weichselgartner J (2001) Disaster mitigation: the concept of vulnerability revisited. Disaster Prevent Manage 10:85–94CrossRefGoogle Scholar
  96. Weichselgartner J (2002) Naturgefahren als soziale Konstruktion. Eine geographische Betrachtung der gesellschaftlichen Auseinandersetzung mit Naturrisiken. Skaker, AachenGoogle Scholar
  97. Wieringa J, Davenport AG, Grimmond CSB, Oke TR (2001) New revision of davenport roughness classification. Proceedings of the 3rd European & African conference on wind engineering, Eindhoven, July 2001. Available via Accessed 18 Aug 2008
  98. Wisner B (2004) Assessment of capability and vulnerability. In: Bankoff G, Frerks G, Hilhorst D (eds) Mapping vulnerability: disasters, development and people. Earthscan, London, pp 183–193Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.alpS Centre for Climate Change Adaptation TechnologiesInnsbruckAustria
  2. 2.Institute of GeographyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations