Natural Hazards

, Volume 58, Issue 1, pp 541–557 | Cite as

Climate and solar signals in property damage losses from hurricanes affecting the United States

  • Thomas H. Jagger
  • James B. Elsner
  • R. King Burch
Original Paper

Abstract

The authors show that historical property damage losses from US hurricanes contain climate signals. The methodology is based on a statistical model that combines a specification for the number of loss events with a specification for the amount of loss per event. Separate models are developed for annual and extreme losses. A Markov chain Monte Carlo procedure is used to generate posterior samples from the models. Results indicate the chance of at least one loss event increases when the springtime north–south surface pressure gradient over the North Atlantic is weaker than normal, the Atlantic ocean is warmer than normal, El Niño is absent, and sunspots are few. However, given at least one loss event, the magnitude of the loss per annum is related only to ocean temperature. The 50-year return level for a loss event is largest under a scenario featuring a warm Atlantic Ocean, a weak North Atlantic surface pressure gradient, El Niño, and few sunspots. The work provides a framework for anticipating hurricane losses on seasonal and multi-year time scales.

Keywords

Hurricanes Property damage Loss model Environment Risk compound Poisson MCMC 

Notes

Acknowledgments

We thank Gary Kerney of the Property Claims Service for providing the damage loss data. This research is supported by Florida State University’s Catastrophic Storm Risk Management Center, the Risk Prediction Initiative of the Bermuda Institute for Ocean Studies (RPI-08-02-002), and by the US National Science Foundation (ATM-0738172). The views expressed within are those of the authors and do not reflect those of the funding agency.

References

  1. Changnon SA (2009) Characteristics of severe Atlantic hurricanes in the United States: 1949–2006. Nat Hazards 48(3):329–337. doi:10.1007/s11069-008-9265-z CrossRefGoogle Scholar
  2. Changnon SA, Changnon D (2009) Assessment of a method used to time adjust past storm losses. Nat Hazards 50(1):5–12. doi:10.1007/s11069-008-9307-6 CrossRefGoogle Scholar
  3. Coles S (2001) An introduction to statistical modeling of extreme values. Springer, LondonGoogle Scholar
  4. Coles S, Pericchi L, Sisson S (2003) A fully probabilistic approach to extreme rainfall modeling. J Hydrol 273(1–4):35–50CrossRefGoogle Scholar
  5. Coles SG, Tawn JA (1996) A Bayesian analysis of extreme rainfall data. J Royal Stat Soc Ser C (Appl Stat) 45(4):463–478, http://www.jstor.org/stable/2986068
  6. Elsner JB, Jagger TH (2004) A hierarchical Bayesian approach to seasonalhurricane modeling. J Clim 17(14):2813–2827CrossRefGoogle Scholar
  7. Elsner JB, Jagger TH (2006) Prediction models for annual US hurricane counts. J Clim 19(12):2935–2952CrossRefGoogle Scholar
  8. Elsner JB, Jagger TH (2008) United States and Caribbean tropical cyclone activity related to the solar cycle. Geophys Res Lett 35(18). doi:10.1029/2008GL034431
  9. Elsner JB, Bossak BH, Niu XF (2001) Secular changes to the ENSO-US hurricane relationship. Geophys Res Lett 28(21):4123–4126CrossRefGoogle Scholar
  10. Elsner JB, Niu XF, Jagger TH (2004) Detecting shifts in hurricane rates using a Markov chain Monte Carlo approach. J Clim 17(13):2652–2666CrossRefGoogle Scholar
  11. Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nat Biotechnol 455(7209):92–95. doi:10.1038/nature07234 Google Scholar
  12. Elsner JB, Jagger TH, Hodges RE (2010) Daily tropical cyclone intensity response to solar ultraviolet radiation. Geophys Res Lett 37. doi:10.1029/2010GL043091
  13. Emanuel KA (1991) The theory of hurricanes. Annu Rev Fluid Mech 23:179–196CrossRefGoogle Scholar
  14. Gilks WR, Richardson S, Spiegelhalter DJ (1998) Markov chain Monte Carlo in practice. Chapman & Hall, Boca Raton, Fla., 98033429 edited by W.R. Gilks, S. Richardson, and D.J. Spiegelhalter. ill. ; 25 cm. Previously published: London : Chapman & Hall, 1996. Includes bibliographical references and indexGoogle Scholar
  15. Hsieh P (2004) A data-analytic method for forecasting next record catastrophe loss. J Risk Insur 71(2):309–322CrossRefGoogle Scholar
  16. Jagger TH, Elsner JB (2006) Climatology models for extreme hurricane winds near the United States. J Clim 19(13):3220–3236CrossRefGoogle Scholar
  17. Jagger TH, Elsner JB, Niu XF (2001) A dynamic probability model of hurricane winds in coastal counties of the United States. J Appl Meteorol 40:853–863CrossRefGoogle Scholar
  18. Jagger TH, Elsner JB, Saunders MA (2008) Forecasting US insured hurricane losses. In: Murnane RJ, Diaz HF (eds) Climate extremes and society, chap 10. Cambridge University Press, CambridgeGoogle Scholar
  19. Jagger TH, Elsner JB, Burch KR (2010) Environmental signals in property damage losses from hurricanes. In: Elsner JB, Hodges RE, Malmstadt JC, Scheitlin KN (eds) Hurricanes and climate change, vol. 2, chap 6. Springer, New YorkGoogle Scholar
  20. Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol 17(13):1433–1450CrossRefGoogle Scholar
  21. Katz RW (2002) Stochastic modeling of hurricane damage. J Appl Meteorol 41(7):754–762CrossRefGoogle Scholar
  22. Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25(8–12):1287–1304CrossRefGoogle Scholar
  23. Leckebusch GC, Ulbrich U, Froehlich L, Pinto JG (2007) Property loss potentials for European midlatitude storms in a changing climate. Geophys Res Lett 34(5). doi:10.1029/2006GL027663
  24. Malmstadt JC, Scheitlin KN, Elsner JB (2009) Florida hurricanes and damage costs. Southeastern Geographer 49:108–131CrossRefGoogle Scholar
  25. Murnane RJ, Barton C, Collins E, Donnelly J, Elsner J, Emanuel K, Ginis I, Howard S, Landsea C, Liu K, Malmquist D, McKay M, Michaels A, Nelson N, O’Brien J, Scott D, Webb T III (2000) Model estimates hurricane wind speed probabilities. EOS Trans 81:433–433. doi:10.1029/00EO00319 CrossRefGoogle Scholar
  26. Pielke RA, Gratz J, Landsea CW, Collins D, Saunders MA, Musulin R (2008) Normalized hurricane damage in the united states: 1900–2005. Nat Hazards Rev 9(1):29–42 doi:10.1061/(ASCE1527-6988(2008)9:1(29)) http://link.aip.org/link/?QNH/9/29/1 Google Scholar
  27. Ropelewski CF, Jones PD (1987) An extension of the Tahiti-Darwin Southern oscillation index. Mon Weather Rev 115(9):2161–2165CrossRefGoogle Scholar
  28. Saunders MA, Lea AS (2005) Seasonal prediction of hurricane activity reaching the coast of the United States. Nat Biotechnol 434(7036):1005–1008. doi:10.1038/nature03454 Google Scholar
  29. Spiegelhalter DJ, Best NG, Gilks WR, Inskip H (1996) Hepatitis B: a case study in MCMC methods. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov Chain Monte Carlo in practice, chap 2.. Chapman & Hall/CRC, London, pp 21–43Google Scholar
  30. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J Royal Stat Soc Ser B (Stat Methodol) 64(Part 4):583–616CrossRefGoogle Scholar
  31. Walshaw D (2000) Modelling extreme wind speeds in regions prone to hurricanes. J Royal Stat Soc Ser C (Appl Stat) 49(Part 1):51–62CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Thomas H. Jagger
    • 1
  • James B. Elsner
    • 1
  • R. King Burch
    • 2
  1. 1.Department of GeographyFlorida State UniversityTallahasseeUSA
  2. 2.HonoluluUSA

Personalised recommendations