Natural Hazards

, Volume 58, Issue 2, pp 645–680 | Cite as

Physical vulnerability assessment for alpine hazards: state of the art and future needs

  • M. Papathoma-Köhle
  • M. Kappes
  • M. Keiler
  • T. Glade
Original Paper

Abstract

Mountain hazards such as landslides, floods and avalanches pose a serious threat to human lives and development and can cause considerable damage to lifelines, critical infrastructure, agricultural lands, housing, public and private infrastructure and assets. The assessment of the vulnerability of the built environment to these hazards is a topic that is growing in importance due to climate change impacts. A proper understanding of vulnerability will lead to more effective risk assessment, emergency management and to the development of mitigation and preparedness activities all of which are designed to reduce the loss of life and economic costs. In this study, we are reviewing existing methods for vulnerability assessment related to mountain hazards. By analysing the existing approaches, we identify difficulties in their implementation (data availability, time consumption) and differences between them regarding their scale, the consideration of the hazardous phenomenon and its properties, the consideration of important vulnerability indicators and the use of technology such as GIS and remote sensing. Finally, based on these observations, we identify the future needs in the field of vulnerability assessment that include the user-friendliness of the method, the selection of all the relevant indicators, the transferability of the method, the inclusion of information concerning the hazard itself, the use of technology (GIS) and the provision of products such as vulnerability maps and the consideration of the temporal pattern of vulnerability.

Keywords

Vulnerability Landslides Avalanches Debris flows Rock falls Floods 

References

  1. Akbas SO, Blahut J, Sterlacchini S (2009) Critical assessment of existing physical vulnerability estimation approaches for debris flows. In: Malet JP, Remaitre A, Bogaard T (eds) Proceedings of landslide processes: from geomorphologic mapping to dynamic modelling. Strasburg, France, 6–7 February 2009, pp 229–233Google Scholar
  2. Alexander D (2005) Vulnerability to landslides. In: Glade T, Anderson M, Crozier M (eds) Landslide hazard and risk. Wiley, Chichester, UK, pp 175–198Google Scholar
  3. Barbolini M, Cappabianca F, Sailer R (2004) Empirical estimate of vulnerability relations for use in snow avalanche risk assessment. In: Brebbia CA (ed) Risk analysis, IV. WIT Press, Southampton, pp 533–542Google Scholar
  4. Barredo J (2007) Major flood disasters in Europe: 1950–2005. Nat Hazards 42:125–148CrossRefGoogle Scholar
  5. Bell R, Glade T (2004) Quantitative risk analysis for landslides - Examples from Bildudalur, NW-Iceland. Nat Hazards Earth Syst Sci 4:117–131CrossRefGoogle Scholar
  6. Bertrand D, Naaim M, Brun M (2010) Physical vulnerability of reinforced concrete buildings impacted by snow avalanches. Nat Hazards Earth Syst Sci 10:1531–1545CrossRefGoogle Scholar
  7. BFF, SLF (Bundesamt für Forstwesen, Eidgenössisches Institut für Schnee- und Lawinenforschung) (1984) Richtlinien zur Berücksichtigung der Lawinengefahr bei raumwirksamen Tätigkeiten. Bundesamt für Forstwesen, Eidgenössisches Institut für Schnee- und Lawinenforschung, Davos und BernGoogle Scholar
  8. Birkmann J (2006) Indicators and criteria for measuring vulnerability: Theoretical bases and requirements. In: Birkmann J (ed) Measuring Vulnerability to Natural Hazards. United Nations University Press, pp 55–77Google Scholar
  9. Blaikie P, Cannon T, Davis I, Wisner B (1994) At Risk, Natural Hazards, People’s Vulnerability and Disasters. Routledge Press, London, p 284Google Scholar
  10. Blöchl A, Braun B (2005) Economic assessment of landslide risks in the Schwabian Alb, Germany -research framework and first results of homeowners and experts surveys. Nat Hazards Earth Syst Sci 5:389–396CrossRefGoogle Scholar
  11. Bohle HG, Glade T (2007) Vulnerabilitätskonzepte in Sozial- und Naturwissenschaften. In: Felgentreff C, Glade T (eds) Naturrisiken und Sozialkatastrophen, pp 99–119Google Scholar
  12. Brooks N (2003) Vulnerability risk and adaptation: a conceptual framework, Tyndall Centre for Climate Change Research. Working paper 38:1–16Google Scholar
  13. Bründl, M. (Editor), 2009. Risikokonzept für Naturgefahren. Einzelprojekt A1.1: Leitfaden. Nationale Plattform Naturgefahren PLANAT, Bern, p 420. http://www.planat.ch/ressources/planat_product_de_1110.pdf)
  14. Bründl M, Romang HE, Bischof N, Rheinberger CM (2009) The risk concept and its application in natural hazard risk management in Switzerland. Nat Hazards Earth Syst Sci 9(3):801–813CrossRefGoogle Scholar
  15. Bründl M, Bartelt P, Schweizer J, Keiler M, Glade T (2010) Snow avalanche risk analysis—review and future challenges. In: Alcantara-Ayla I, Goudie A (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 49–61Google Scholar
  16. Büchele B, Kreibich H, Kron A, Thieken A, Ihringer J, Oberle P, Merz B, Nestmann F (2006) Flood-risk mapping: contributions towards and enhanced assessment of extreme events and associated risks. Nat Hazards Earth Syst Sci 6:485–503CrossRefGoogle Scholar
  17. BUWAL (Bundesamt für Umwelt, Wald und Landschaft) (1999a) Risikoanalyse bei gravitative Naturgefahren: Methode, Umweltmaterialen No 107/1 Naturgefahren, p 115Google Scholar
  18. BUWAL (Bundesamt für Umwelt, Wald und Landschaft) (1999b) Risikoanalyse bei gravitative Naturgefahren: Fallbeispiele und Daten, Umweltmaterialen No 107/2 Naturgefahren, p 129Google Scholar
  19. BUWAL, BWW, BRP (Bundesamt für Umwelt, Wald und Landschaft, Bundesamt für Wasserwirtschaft, Bundesamt für Raumplanung) (1997) Berücksichtigung der Massenbewegungsgefahren bei raumwirksamen Tätigkeiten. Bundesamt für Umwelt, Wald und Landschaft, Bundesamt für Wasserwirtschaft, Bundesamt für Raumplanung, Bern und BielGoogle Scholar
  20. BWW, BRP, BUWAL (Bundesamt für Wasserwirtschaft, Bundesamt für Raumplanung, Bundesamt für Umwelt, Wald und Landschaft) (1997) Berücksichtigung der Hochwassergefahren bei raumwirksamen Tätigkeiten. Bundesamt für Wasserwirtschaft, Bundesamt für Raumplanung, Bundesamt für Umwelt, Wald und Landschaft, Biel und BernGoogle Scholar
  21. Cappabianca F, Barbolini M, Natale L (2008) Snow avalanche risk and mapping: a new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically based vulnerability relations integrated in a GIS platform. Cold Reg Sci Technol 54:193–205CrossRefGoogle Scholar
  22. Cardinali M, Reinbach P, Guzzetti F, Ardizzone F, Antonini G, Galli M, Cacciano M, Castellani M, Salvati P (2002) A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat Hazards Earth Syst Sci 2:57–72CrossRefGoogle Scholar
  23. CENAT (2004) Monte Verità Workshop 2004, Coping with Risks due to Natural Hazards in the 21st Century, 28 November 2004–03 December 2004, GLOSSARY, http://www.cenat.ch/index.php?navID=824&userhash=41529&I=e
  24. Corominas J, Copons R, Moya J, Vilaplana JM, Altimir J, Amigo J (2005) Quantitative assessment of the residual risk in a rockfall protected area. Landslides 2:343–357CrossRefGoogle Scholar
  25. Crozier MJ (1999) Slope instability: landslides. In: Alexander D, Fairbridge RW (eds) Encyclopaedia of environmental science. Dordrecht, pp 561–562Google Scholar
  26. De Lotto P, Testa G (2000) Risk assessment: a simplified approach of flood damage evaluation with the use of GIS. Interpraevent 2:281–291Google Scholar
  27. Deutsche Rück (1999) Das Pfingsthochwasser im Mai 1999. Deutsche Rückversicherung AGGoogle Scholar
  28. Douglas J (2007) Physical vulnerability modelling in natural hazard risk assessment. Nat Hazards Earth Syst Sci 7:283–288CrossRefGoogle Scholar
  29. Dutta D, Herath S, Musiake K (2003) A mathematical model for flood loss estimation. J Hydrol 277:24–49CrossRefGoogle Scholar
  30. ER NZI (2004) Economic impacts on New Zealand of climate change-related extreme events. Focus on fresh-water floods. New Zealand Climate Change Office, New ZealandGoogle Scholar
  31. Fell R, Hartford D (1997) Landslide risk management. In: Dikau R, Brunsden D, Schrott L, Ibsen M-L (eds) Landslide recognition. Identification, movement and causes. Wiley, Chichester p. 251Google Scholar
  32. FEMA (2007) Multi-hazard loss estimation methodology: flood model. HAZUS-MH MR3. Department of Homeland Security, Federal Emergency Management Agency, USAGoogle Scholar
  33. Fuchs S (2009) Susceptibility versus resilience to mountain hazards in Austria—paradigms of vulnerability revisited. Nat Hazards Earth Syst Sci 9:337–352CrossRefGoogle Scholar
  34. Fuchs S, Heiss K, Hübl J (2007) Towards an empirical vulnerability function for use in debris flow risk assessment. Nat Hazards Earth Syst Sci 7:495–506CrossRefGoogle Scholar
  35. Galli M, Guzzetti F (2007) Landslide vulnerability criteria: a case study from Umbria, Central Italy. Environ Manage 40:649–664CrossRefGoogle Scholar
  36. Glade T (2003) Vulnerability assessment in landslide risk analysis. Die Erde 134:123–146Google Scholar
  37. Glade T, Crozier M (2005) The nature of landslide hazard impact. In: Glade T, Anderson M, Crozier M (eds) Landslide hazard and risk. Wiley, Chichester, pp 43–74Google Scholar
  38. Greenaway MA, Smith DI (1983) ANUFLOOD field guide. Centre of Resource and Environmental Studies, Australian National University, CanberraGoogle Scholar
  39. Grünthal G, Thieken A, Schwarz J, Radtke K, Smolka A, Merz B (2006) Comparative risk assessment for the city of Cologne—storms, floods, earthquakes. Nat Hazards 38:21–44CrossRefGoogle Scholar
  40. Hollenstein K (2005) Reconsidering the risk assessment concept: standardizing the impact description as a building block for vulnerability assessment. Nat Hazards Earth Syst Sci 5:301–307CrossRefGoogle Scholar
  41. Hollenstein K, Bieri O, Stückelberger J (2002) Modellierung der Vulnerabilität von Schadobjekten gegenüber Naturgefahrenprozessen. ETH Zürich, Forstliches IngenieurwesenGoogle Scholar
  42. Höller P (2007) Avalanche hazards and mitigation in Austria: a review. Nat Hazards 43:81–101CrossRefGoogle Scholar
  43. Holub M, Fuchs S (2009) Mitigating mountain hazards in Austria—legislation, risk transfer, and awareness building. Nat Hazard Earth Syst Sci 9:523–537CrossRefGoogle Scholar
  44. Holub M, Hübl J (2008) Local protection against mountain hazards—state of the art and future needs. Nat Hazard Earth Syst Sci 8:81–99CrossRefGoogle Scholar
  45. Hooijer A, Li Y, Kerssens P, Van der Vat M, Zhang J (2001) Risk assessment as a basis for sustainable flood management. 29th Annual congress of the international-association-of-hydraulic-engineering-and-research (IAHR), Bejing, China, pp 442–449Google Scholar
  46. Hufschmidt G, Crozier M, Glade T (2005) Evolution of natural risk: research framework and perspectives. Nat Hazard Earth Syst Sci 5:375–387CrossRefGoogle Scholar
  47. IUGS (1997) Quantitative risk assessment for slopes and landslides-the state of the art. In: Cruden DM, Fell R (eds) Landslide risk assessment. Roterdam, Balkema, pp 3–12Google Scholar
  48. Iverson MR (1997) The physics of debris flows. Rev Geophys 35(3):245–296CrossRefGoogle Scholar
  49. Jonasson K, Sigurosson S, Arnalds P (1999) Estimation of avalanche risk. Vedurstofu Islands n. R99001-ur01,  p 44Google Scholar
  50. Kang JL, Su MD, Chang LF (2005) Loss functions and framework for regional flood damage estimation in residential area. J Mar Sci Technol 13:193–199Google Scholar
  51. Kaynia AM, Papathoma-Köhle M, Neuhäuser B, Ratzinger K, Wenzel H, Medina-Cetina Z (2008) Probabilistic assessment of vulnerability to landslide: application to the village of Lichtenstein, Baden-Württemberg, Germany. Eng Geol 101:33–48CrossRefGoogle Scholar
  52. Keiler M (2004) Development of the damage potential resulting from the avalanche risk in the period 1950–2000, case study, Galtür. Nat Hazard Earth Syst Sci 4:249–256CrossRefGoogle Scholar
  53. Keiler M, Sailer R, Jörg P, Weber C, Fuchs S, Zischg A, Sauermoser S (2006) Avalanche risk assessment—a multi-temporal approach, results from Galtür, Austria. Nat Hazard Earth Syst Sci 6:637–651CrossRefGoogle Scholar
  54. Keiler M, Knight J, Harrison S (2010) Climate change and geomorphological hazards in the eastern European Alps. Philos Trans R Soc A 368:2461–2479CrossRefGoogle Scholar
  55. Kelman I, Spence R (2004) An overview of flood actions on buildings. Eng Geol 73:297–309CrossRefGoogle Scholar
  56. Keylock CJ, Barbolini M (2001) Snow avalanche impact pressure-vulnerability relations for use in risk assessment. Can Geotech J 38:227–238CrossRefGoogle Scholar
  57. Leone F, Aste JP, Leroi E (1996) Vulnerability assessment of elements exposed to mass-movement: working toward a better risk perception. In: Senneset K (ed) Landslides. Balkema, Rotterdam, pp 263–270Google Scholar
  58. Liu X, Lei J (2003) A method for assessing regional debris flow risk: an application in Zhaotong of Yunnan province (SW China). Geomorphology 52:181–191Google Scholar
  59. Macquarie O, Thiery Y, Malet JP, Weber C, Puissant A, Wania A (2004) Current practices and assessment tools of landslide vulnerability in mountainous basins-identification of exposed elements with a semi-automatic procedure. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilisation. Taylor and Francis Group, London, pp 171–176Google Scholar
  60. Mavrouli O, Corominas J (2008) Structural response and vulnerability assessment of buildings in front of the rock fall impact, Geophysical Research Abstract 10Google Scholar
  61. McClung D, Schaerer P (1993) The avalanche handbook. The Mountaineers, Seattle, p 271Google Scholar
  62. Mejia-Navarro M, Wohl LEE, Oaks SD (1994) Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado. Geomorphology 10:331–354CrossRefGoogle Scholar
  63. Merz B, Kreibich H, Thieken A, Schmidtke R (2004) Estimation uncertainty of direct monetary flood damage to buildings. Nat Hazards Earth Syst Sci 4:153–163CrossRefGoogle Scholar
  64. Merz B, Kreibich H, Schwarze R, Thieken A (2010) Review article “Assessment of economic flood damage”. Nat Hazards Earth Syst Sci 10:1697–1724CrossRefGoogle Scholar
  65. Messner F, Meyer V (2005) Flood damage, vulnerability and risk perception—challenges for flood damage research. UFZ Discussion Paper. Umweltforschungszentrum Leipzig, HalleGoogle Scholar
  66. Meyer V, Scheuer S, Haase D (2009) A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Nat Hazards 48:17–39CrossRefGoogle Scholar
  67. Michael-Leiba, Baynes F, Scott G, Granger K (2003) Regional landslide risk to the cairns community. Nat Hazards 30:233–249CrossRefGoogle Scholar
  68. Middelmann-Fernandes M (2010) Flood damage estimation beyond stage-damage functions: an Australian example. J Flood Risk Manage 3:88–96CrossRefGoogle Scholar
  69. Papathoma-Köhle M, Neuhäuser B, Ratzinger K, Wenzel H, Dominey-Howes D (2007) Elements at risk as a framework for assessing the vulnerability of communities to landslides. Nat Hazards Earth Syst Sci 7:765–779CrossRefGoogle Scholar
  70. Romang H (2004) Wirksamkeit und Kosten von Wildbach-Schutzmassnahmen.Verlag des Geographischen Instituts der Universität Bern, p 212Google Scholar
  71. Santos JG (2003) Landslide susceptibility and risk maps of Regua (Douro basin, NE Portugal). In: Proceeding of the IAG and IGU-C12 Regional Conference “Geomorphic hazards; towards the prevention of disasters”, Mexico City, MexicoGoogle Scholar
  72. Shrestha A (2005) Vulnerability assessment of weather disasters in Syangja District, Nepal: a case study in Putalibazaar Municipality, Advances Institute on Vulnerability to Global Environmental ChangeGoogle Scholar
  73. Spichtig S, Bründl M (2008) Verletzlichkeit bei gravitativen Naturgefahren—eine Situationsanalyse. Projekt B5. Schlussbericht. Nationale Plattform Naturgefahren PLANAT, BernGoogle Scholar
  74. Sterlacchini S, Frigerio S, Giacomelli P, Brambilla M (2007) Landslide risk analysis: a multi-disciplinary methodological approach. Nat Hazards Earth Syst Sci 7:657–675CrossRefGoogle Scholar
  75. Thieken A, Merz B, Grünthal G, Schwarz J, Radtke K, Smolka A, Gocht M (2005) A comparison of storm, flood and earthquake risk for the city of Cologne, Germany. In: Proceedings of the 1st ARMONIA conference, Barcelona, SpainGoogle Scholar
  76. Turner II BL, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, Eckley N, Kasperson JX, Luers A, Martello ML, Polsky C, Pulsipher A, Schiller A (2003) A framework for vulnerability analysis in sustainability science. In: Proceedings of the national academy of sciences, 100(14)Google Scholar
  77. UNDHA (1992) Internationally agreed glossary of basic terms related to disaster management. United Nations Department of Humanitarian AffairsGoogle Scholar
  78. UNDRO (1984) Disaster prevention and mitigation—a compendium of current knowledge, vol 11. Preparedness Aspects, New YorkGoogle Scholar
  79. Uzielli M, Nadim F, Lacasse S, Kaynia AM (2008) A conceptual framework for quantitative estimation of physical vulnerability to landslides. Eng Geol 102:251–256CrossRefGoogle Scholar
  80. Varnes D J (1984) Landslide hazard zonation: a review of principles and practice. Natural Hazards, 3, Paris, UNESCO, p 63Google Scholar
  81. Weichselgartner J (2001) Disaster mitigation: the concept of vulnerability revisited. Disaster Prevent Manage 10(2):85–94CrossRefGoogle Scholar
  82. White G (1945) Human adjustment to floods—a geographical approach to the flood problem in the United States. Research Paper No. 29. University of Chicago, USAGoogle Scholar
  83. Wilhelm C (1997) Wirtschaftlichkeit im Lawinenschutz, Mitteilungen des Eidgenossisches Institut für Schnee- und Lawinenforschung, 54, DavosGoogle Scholar
  84. WMO (1999) Comprehensive risk assessment for natural hazards. Technical document, no. 955. World Meteorological OrganisationGoogle Scholar
  85. Zezere JL, Garcia RAC, Oliveira SC, Reis E (2008) Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology 94:467–495CrossRefGoogle Scholar
  86. Zhai G, Fukozono T, Ikeda S (2006) An empirical model of fatalities and injuries due to floods in Japan. J Am Water Resour As 42:863–875CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. Papathoma-Köhle
    • 1
  • M. Kappes
    • 1
  • M. Keiler
    • 1
  • T. Glade
    • 1
  1. 1.Institute of Geography and Regional ResearchUniversity of Vienna, AustriaViennaAustria

Personalised recommendations