Natural Hazards

, Volume 70, Issue 3, pp 1795–1825 | Cite as

Earthquake early warning for transport lines

  • Désirée HilbringEmail author
  • Tanja Titzschkau
  • Alfons Buchmann
  • Gottfried Bonn
  • Friedemann Wenzel
  • Eberhard Hohnecker
Original Paper


This paper analyzes the potential of earthquake early-warning systems for transport lines. The interdisciplinary work focuses on rapidly producing an alert map during an ongoing earthquake as well as providing a damage map immediately after the strong-motion phase that visualizes potential damages to the railway infrastructure. In order to meet these application requirements, a service-oriented architecture based on geospatial standards is specified. This ensures the portability of the system architecture to different geographic regions as well as a potential transfer to other natural disasters and infrastructure systems. The first part of the paper describes the standard-based services of the system architecture together with design principles that are useful for the realization of early-warning systems. In the second part of the paper, an online demonstrator for the exemplary test area in the federal state of Baden-Württemberg, Germany, is presented. The system architecture of the demonstrator includes an earthquake early-warning methodology based on artificial neural networks and an infrastructure-specific damage assessment. The third part of the paper analyzes the potential of implementing low-cost sensors in the track, which would provide a dense network directly at the railway infrastructure.


Earthquake early warning Service-oriented architecture Artificial neural networks Noise model Hazard and vulnerability analysis for railway lines 



Alert map

Map displaying PGA values that have been estimated from the P wave and are expected to occur during the strong-motion phase of an earthquake, i.e. after the arrival of the S wave


Open Geospatial Consortium, an organization that is leading the development of standards for geospatial and location-based services (


Peak ground acceleration, absolute value of the maximum horizontal acceleration of seismic waves caused by an earthquake

P wave

Primary wave, fastest traveling seismic body wave with longitudinal polarization. The P wave carries information on the location and size of the earthquake

Shake map

Map displaying actual PGA values that were caused by an earthquake and have been recorded by instruments


Sensor Observation Service, an OGC standard providing an API for managing deployed sensors and retrieving sensor data and specifically “observation” data


Sensor Planning Service, an OGC standard providing an interface by which a client can determine collection feasibility for a desired set of collection requests for one or more sensors or platforms

S wave

Secondary or shear wave, seismic body wave with transverse polarization. Due to its transverse polarization and large amplitudes, the S wave generally causes the largest amount of damage

Track superstructure

Railway track superstructure comprises rails, rail fastening, sleepers and ballast, or in the case of a slab track, the concrete slab and the hydraulically bonded support layer

Use case

Application scenario describing the use of specific functionality of a system, that is required by its users


Web Feature Service, an OGC standard providing interfaces to retrieve and update geospatial data encoded in Geography Markup Language (GML)


Web Processing Service, an OGC standard providing an interface that facilitates the publishing of geospatial processes, and the discovery of and binding to those processes by clients. Processes include any algorithm, calculation or model that operates on spatially referenced data


Web Service Notification, an OASIS standard from the WS-Notification family defining a standard Web services approach for the event-driven notification pattern


  1. Allen R, Kanamori H (2003) The potential for earthquake early warning in Southern California. Science 300:786–789CrossRefGoogle Scholar
  2. Basöz N, Mander J (1999) Enhancement of highway transportation lifeline module in HAZUS, Draft 7, Federal Emergency Management Agency (FEMA) and National Institute for Building SciencesGoogle Scholar
  3. Beaujardière J (ed) (2002) Web map service implementation specification, OGC 01-068r3Google Scholar
  4. Böse M, Wenzel F, Erdik M (2008) PreSEIS: a neural network-based approach to earthquake early warning for finite faults. Bull Seismol Soc Am 98(1):366–382CrossRefGoogle Scholar
  5. Botts M (ed) (2007) OpenGIS sensor model language (SensorML) implementation specification, OGC 07-000Google Scholar
  6. Chen Q, Li l, Li G, Chen L, Peng W, Tang Y, Chen Y, Wang F (2004) Seismic features of vibration induced by train. Acta Seismol Sin 17(6):715–724CrossRefGoogle Scholar
  7. Cox S (ed) (2007) Observations and measurements—Part 1—observation schema, OGC 07-022r1Google Scholar
  8. Cua G, Heaton T (2007) The virtual seismologist (VS) method: a Bayesian approach to earthquake early warning. In: Gasparini P, Manfredi G, Zschau J (eds) Earthquake early warning systems. Springer, Berlin, pp 97–132, ISBN: 978-3-540-72240-3Google Scholar
  9. Eisenmann Th (2010) Fiber optical sensing with fiber Bragg gratings, BMBF Geotechnologien Science Report 15Google Scholar
  10. Espinosa-Aranda J, Jimenez A, Ibarolla G, Alcantar F, Aguilar A, Inostroza M, Maldonado S (1995) Mexico city seismic alert system. Seismol Res Lett 66(6):42–53CrossRefGoogle Scholar
  11. Esveld C (2001) Modern railway track. MRT Productions, ZaltbommelGoogle Scholar
  12. Fendrich L (ed) (2007) Handbuch Eisenbahninfrastruktur. Springer, BerlinGoogle Scholar
  13. Fleming K, Picozzi M, Milkereit C, Kuehnlenz F, Lichtblau B, Fischer J, Zulfikar C, Ozel O, The SAFER and EDIM working groups (2009) The self-organising seismic early warning information network (SOSEWIN), to be published by Seismological Research LettersGoogle Scholar
  14. GeoServer (visited in Sep 2009) GeoServer,
  15. Graham S, Hull D, Murray B (eds) (2006) OASIS Web Services Base Notification 1.3 (WS-BaseNotification),
  16. Grünthal G (ed) (1998) Macroseismic Scale 1998 EMS-98, Chairman of the ESC Working Group “Macroseismic Scales”, GeoForschungsZentrum Potsdam, GermanyGoogle Scholar
  17. Grünthal G, Bosse Ch (1996) Probabilistische Karte der Erbebengefährdung der Bundesrepublik Deutschland—Erdbebenzonierungskarte für das Nationale Anwendungsdokument zum Eurocode 8, GeoForschungsZentrum Potsdam, STR 96/10, 24Google Scholar
  18. Horiuchi S, Negishi H, Abe K, Kamimura A, Fujinawa Y (2005) An automatic processing system for broadcasting earthquake alarms. Bull Seismol Soc Am 95(2):708–718CrossRefGoogle Scholar
  19. Iosifescu-Enesu I (2007) ORCHESTRA, Specification of the map and diagram service,
  20. Jones E, Botterel A (eds) (2005) OASIS common alerting protocol, v1.1, OASIS standard CAP-V1.1, October 2005,
  21. Kamigaichi O, Saito M, Doi K, Matsumori T, Tsukada S, Takeda K, Shimoyama T, Nakamura K, Kiyomoto M, Watanabe Y (2009) Earthquake early warning in Japan: warning the general public and future prospects. Seismol Res Lett 80(5):717–726CrossRefGoogle Scholar
  22. Köhler N, Cua G, Wenzel F, Böse M (accepted: June 2009) Rapid source parameter estimations of southern California earthquakes using PreSEIS. Seism Res Lett (in press)Google Scholar
  23. Kunz S, Usländer T, Watson K (2009) A testbed for sensor service networks and the fusion SOS: towards plug & measure in sensor networks for environmental monitoring with OGC standards. Proceedings of the 18th World IMACS / MODSIM Congress, Cairns, Australia, 13–17 July 2009,
  24. Lay T, Wallace TC (1995) Modern global seismology. International geophysics series, vol 58. Academic Press, San DiegoGoogle Scholar
  25. Leydecker G (2008) Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten ab dem Jahre 800; Datafile:; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR); Version 22.05.2008
  26. Lichtberger B (2004) Handbuch Gleis. Tetzlaff Verlag, HamburgGoogle Scholar
  27. McNamara DE, Hutt CR, Gee LS, Benz HM, Buland RP (2009) A method to establish seismic noise baselines for automated station assessment. Seismol Res Lett 80(4):628–637CrossRefGoogle Scholar
  28. McNamara DE, Buland RP (2004) Ambient noise levels in the continental United States. Bull Seismol Soc Am 94(4):1517–1527CrossRefGoogle Scholar
  29. Meskouris K, et al. (2007) Gefährdungsabschätzung von Brücken in Deutschland unter Erdbebenbelastung, Forschung Straßenbau und Straßenverkehrstechnik 952, Bundesministerium für Verkehr, Bau und StadtentwicklungGoogle Scholar
  30. Müller-Boruttau F, Breitsamter N, Pieper S (2009) Measuring the effects that flat spots have on the dynamic wheel load and on rail pad forces. Railway Tech Rev 1:24–29Google Scholar
  31. Nah A, Priest M (eds) (2007) Sensor Observation Service, Open Geospatial Consortium, OGC 06-009r6Google Scholar
  32. Nakamura Y (1996) Real-time information systems for seismic hazards mitigation UrEDAS, HERAS and PIC. Q Rev RTRI 37(3):112–127Google Scholar
  33. Nakamura Y (1997) Seismic vulnerability indices for ground structures using microtremor. World Congress on Railway Research, Florence, pp 16–19Google Scholar
  34. Nakamura Y (2004) UrEDAS, urgent earthquake detection and alarm system, now and future. In: 13th World conference on earthquake engineering, Vancouver, 1–6 Aug, Paper No. 908Google Scholar
  35. Nakamura Y, Saita J (2007) UrEDAS, the earthquake warning system: today and tomorrow. In: Gasparini P, Manfredi G, Zschau J (eds) Earthquake early warning systems. Springer, Berlin, pp 249–281, ISBN: 978-3-540-72240-3Google Scholar
  36. OGC (visited in Aug 2009) OGC, Open Geospatial Consortium, Inc.,
  37. Percivall G (ed) (2008) OGC Reference model version 2.0. Open Geospatial Consortium Document 08-062r4,
  38. Peterson J (1993) Observation and modeling of seismic background noise. U.S.G.S. Open File Report, 93-322Google Scholar
  39. Picozzi M, Milkereit C, Zulfikar C, Fleming K, Ditommaso R, Erdik M, Zschau J, Fischer J, Safak E, Özel O, Apaydin N (2009) Wireless technologies for the monitoring of strategic civil infrastructures: an ambient vibration test on the Fatih Sultan Mehmet Suspension Bridge in Istanbul, Turkey. In press on Bull Earthq Eng, doi:  10.1007/s10518-009-91327
  40. Prud’homme A (1978) Forces and behaviour of railroad tracks at very high train speeds. In: Kerr AD (ed) Railroad track mechanics and technology. Pergamon Press, OxfordGoogle Scholar
  41. Quante F, Schnellbögl G (2010) Railway infrastructure and seismic early warning systems BMBF. Geotechnologien Science Report 15Google Scholar
  42. Schut P (ed) (2007) OpenGIS Web processing service, Open Geospatial Inc., OGC 05-007r7Google Scholar
  43. Simonis I (ed) (2007) OpenGIS sensor planning service implementation specification, OGC 07-014r3Google Scholar
  44. Sokolov V, Wenzel F (2008) Toward realistic ground motion prediction models for Baden-Württemberg, Germany. In: Proceedings of the 31 General Assembly of European Seismological Commission, Sep 2008, Crete, Greece, CD ROMGoogle Scholar
  45. Stange S, Brüstle W (2005) The Albstadt/Swabian Jura seismic source zone reviewed through the study of the earthquake of March 22 2003, Jahresberichte und Mitteilungen Oberrheinscher Geologischer Verein. Neue Folge 87:391–414Google Scholar
  46. Suárez G, Novelo D, Mansilla E (2009) Performance evaluation of the seismic alert system (sas) in Mexico City: a seismological and a social perspective. Seismol Res Lett 80(5):707–716CrossRefGoogle Scholar
  47. Topics Geo (2008) Naturkatastrophen 2008 Analysen, Bewertungen, Positionen, Münchener Rückversicherungs-Gesellschaft,
  48. Usländer T (ed) (2007) Reference model for the ORCHESTRA architecture (RM-OA) V2 (Rev 2.1), OGC 07-097Google Scholar
  49. Usländer T (ed) (2009) Specification of the sensor service architecture (SensorSA), OGC 09-132r1Google Scholar
  50. Wald D, Quitoriano V, Heaton T, Kanamori H (1999) Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California,
  51. Weber E, Iannaccone G, Zollo A, Bobbio A, Cantore L, Corciulo M, Convertito V, Di Crosta M, Elia L, Emolo A, Martino C, Romeo A, Satriano C (2007) Development and testing of an advanced monitoring infrastructure (ISNet) for seismic early-warning applications in the Campania region of southern Italy. In: Gasparini P, Manfredi G, Zschau J (eds) Earthquake early warning systems. Springer, Berlin, pp 325–341CrossRefGoogle Scholar
  52. Wu Y-M, Teng T (2002) A virtual subnetwork approach to earthquake early warning. Bull Seismol Soc Am 92(5):2008–2018CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Désirée Hilbring
    • 1
    Email author
  • Tanja Titzschkau
    • 2
  • Alfons Buchmann
    • 3
  • Gottfried Bonn
    • 1
  • Friedemann Wenzel
    • 2
  • Eberhard Hohnecker
    • 3
  1. 1.Fraunhofer IOSBKarlsruheGermany
  2. 2.Geophysical InstituteKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.Department of Railway SystemsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations