Natural Hazards

, Volume 56, Issue 2, pp 509–527 | Cite as

IFKIS-Hydro: an early warning and information system for floods and debris flows

  • Hans Romang
  • Massimiliano Zappa
  • Nadine Hilker
  • Matthias Gerber
  • François Dufour
  • Valérie Frede
  • Dominique Bérod
  • Matthias Oplatka
  • Christoph Hegg
  • Jakob Rhyner
Original Paper

Abstract

IFKIS-Hydro is an information and warning system for hydrological hazards in small- and medium-scale catchments. The system collects data such as weather forecasts, precipitation measurements, water level gauges, discharge simulations and local observations of event-specific phenomena. In addition, IFKIS-Hydro incorporates a web-based information platform, which serves as a central hub for the submission and overview of data. Special emphasis is given to local information. This is accomplished particularly by human observers. In medium-scale catchments, discharge forecast models have an increasing importance in providing valuable information. IFKIS-Hydro was developed in several test regions in Switzerland and the first results of its application are available now. The system is constantly extended to additional regions and may become the standard for warning systems in smaller catchments in Switzerland.

Keywords

Flood warning Early warning Monitoring Information system Debris flows Risk management 

Notes

Acknowledgements

We would like to thank the cantons of Glarus, Valais and Zurich, as well as the Prevention Foundation of the Cantonal Public Building Insurance Companies for initiating and supporting the IFKIS-Hydro project. The work on ensemble flood forecasting profited from research contracts in the framework of COST731 through the Swiss State Secretariat for Education and Research (SBF C05.0105). Simon Jaun (ETH and WSL) is acknowledged for his effort in developing the operational flood forecast system. Thanks go to MeteoSwiss and to the Federal Office for the Environment for the collaboration and valuable discussions. The simulations are based on the data and model results of MeteoSwiss.

References

  1. Ahmad S, Simonovic SP (2006) An intelligent decision support system for management of floods. Water Resour Manage 20(3):391–410CrossRefGoogle Scholar
  2. Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265CrossRefGoogle Scholar
  3. Badoux A, Graf C, Rhyner J, Kuntner R, McArdell B (2009) A debris-flow alarm system for the Alpine Illgraben catchment: design and performance. Nat Hazards 49:517–539CrossRefGoogle Scholar
  4. Bruendl M, Etter HJ, Steiniger M, Klinger C, Rhyner J, Ammann WJ (2004) IFKIS—a basis for managing avalanche risk in settlements and on roads in Switzerland. Nat Hazards Earth Syst Sci 4:257–262CrossRefGoogle Scholar
  5. Buergi T, Sigrist B, Streit D (2007) Hydrologische Produkte des Bundesamtes für Umwelt—BAFU—bei Hochwasser. Forum für Wissen, Birmensdorf, WSL, pp 69–73Google Scholar
  6. Butts MB, Klinting A, Ivan M, Larsen JK, Brandt J, Price D (2006) Flood forecasting system: integrating web, GIS and modelling. In: Proceedings of the 2006 ESRI International User Conference, San Diego, California, August 7–11, 2006Google Scholar
  7. Cannon SH (1988) Regional rainfall-threshold conditions for abundant debris-flow activity. In: Ellen SD, Wieczorek GF (eds) Landslides, floods, and marine effects of the storm of January 3–5, 1982, in the San Francisco Bay region, California, pp 133–162. U.S. Geological Survey, Professional Paper 1434Google Scholar
  8. Carpenter TM, Sperfslage JA, Georgakakos KP, Sweeney T, Fread DL (1999) National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems. J Hydrol 224(1–2):21–44CrossRefGoogle Scholar
  9. Chan RKS, Pang PLR, Pun WK (2003) Recent developments in the landslip warning system in Hong Kong. In: Proceedings of the 14th Southeast Asian Geotechnical Conference, Hong Kong, China, December 2001Google Scholar
  10. Clark M, Woods R, Ibbitt R (2007) Flood forecasts for New Zealand communities. Water Atmos 15(3):14–15Google Scholar
  11. Couach O, Barrenetxea G, Luyet V, Le Bocey B, Krichane M, Bertholet T, Varidel T, Bystranowski M, Aberer K, Medico J, Parlange M, Vetterli M (2008) SensorScope: a new environmental monitoring system. Example of application in an Alpine environment. In: Proceedings of the International Congress on Environmental Modelling and Software (iEMSs 2008), Catalonia, Barcelona, Spain, 6–10 July 2008Google Scholar
  12. Crozier MJ (1999) Prediction of rainfall-triggered landslides: a test of the antecedent water status model. Earth Surf Process Landforms 24:825–833CrossRefGoogle Scholar
  13. Drobot S, Parker DJ (2007) Advances and challenges in flash flood warnings. Environ Hazards 7:173–178Google Scholar
  14. Georgakakos KP (1986) On the design of national, real-time warning systems with capability for site-specific, flash-flood forecasts. Bullet Am Meteorol Soc 67(10):1233–1239CrossRefGoogle Scholar
  15. Gurtz J, Zappa M, Jasper K, Lang H, Verbunt M, Badoux A, Vitvar T (2003) A comparative study in modelling runoff and its components in two mountainous catchments. Hydrol Process 17:297–311CrossRefGoogle Scholar
  16. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17CrossRefGoogle Scholar
  17. Hilker N, Badoux A, Hegg C (2009) The Swiss flood and landslide damage database 1972–2007. Nat Hazards Earth Syst Sci 9:913–925CrossRefGoogle Scholar
  18. Jaun S, Ahrens B, Walser A, Ewen T, Schaer C (2008) A probabilistic view on the August 2005 floods in the upper Rhine catchment. Nat Hazards Earth Syst Sci 8:281–291CrossRefGoogle Scholar
  19. Jordan F (2007) Modèle de prévision et de gestion des crues—optimisation des opérations des aménagements hydroélectriques à accumulation pour la réduction des débits de crue. Thèse de doctorat no. 3711, Ecole Polytechnique Fédérale LausanneGoogle Scholar
  20. Jordan F, Dubois J, Boillat JL, Schleiss A (2006) Prévision et gestion des crues par opérations préventives sur les retenues alpines. In: Proceedings of the 22nd ICOLD Congress on Large Dams, CIGB-ICOLD, Barcelona, Spain, Q. 87–R. 34, pp 497–510Google Scholar
  21. Lehning M, Voelksch I, Gustafsson D, Nguyen TA, Staehli M, Zappa M (2006) ALPINE3D: a detailed model of mountain surface processes and its application to snow hydrology. Hydrol Process 20(10):2111–2118CrossRefGoogle Scholar
  22. Loster TR (2008) Early warning: people-centered systems are the key. The Mozambique flood warning system SIDPABB. In: Proceedings of the 2008 International Disaster and Risk Conference (IDRC 2008), Davos, Switzerland, 25–29 August 2008Google Scholar
  23. Markar MS, Clark SQ, Malone T, Gooda M, Chen Y, Min Y (2005) A new flood forecasting system for the Yangtze River in China. In: Proceedings of the 3rd International Symposium on Flood Defence (ISFD3), Nijmegen, The Netherlands, 25–27 May 2005Google Scholar
  24. Martina MLV, Todini E, Libralon A (2006) A Bayesian decision approach to rainfall thresholds based flood warning. Hydrol Earth Syst Sci 10:413–426CrossRefGoogle Scholar
  25. McArdell BW, Badoux A (2007) Influence of rainfall on the initiation of debris flows at the Illgraben catchment, canton of Valais, Switzerland. In: Proceedings of the EGU General Assembly, Vienna, Austria, April 2007Google Scholar
  26. McDonnell JJ, Sivapalan M, Vache K, Dunn S, Grant G, Haggerty R, Hinz C, Hooper R, Kirchner J, Roderick ML, Selker J, Weiler M (2007) Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology. Water Resour Res 43:W07301CrossRefGoogle Scholar
  27. Molteni F, Buizza R, Marsigli C, Montani A, Nerozzi F, Paccagnella T (2001) A strategy for high-resolution ensemble prediction. I: definition of representative members and global-model experiments. Q J R Meteorol Soc 127:2069–2094CrossRefGoogle Scholar
  28. Munich Re Group (2007) Topics geo. Natural catastrophes 2006. Munich: Munich Reinsurance Company. Available online at: http://www.munichre.com/publications/302-05217_en.pdf, accessed 08/05/24
  29. NOAA-USGS Debris Flow Task Force (2005) Debris-flow warning system—final report. U.S. Geological Survey, Circular 1283. Available online at: http://pubs.usgs.gov/circ/2005/1283/, accessed December 28, 2009
  30. O’Connor RE, Yarnal B, Dow K, Jocoy CL, Carbone GJ (2005) Feeling at risk matters: water managers and the decision to use forecasts. Risk Anal 25(5):1265–1275CrossRefGoogle Scholar
  31. Pappenberger F, Beven KJ (2006) Ignorance is bliss: or seven reasons not to use uncertainty analysis. Water Resour Res 42:W05302CrossRefGoogle Scholar
  32. Rabuffetti D, Barbero S (2005) Operational hydro-meteorological warning and real-time flood forecasting: the Piemonte Region case study. Hydrol Earth Syst Sci 9(4):457–466CrossRefGoogle Scholar
  33. Romang H, Wilhelm C (2009) Emergency management of flood events in Alpine catchments. In: Samuels P, Huntington S, Allsop W, Harrop J (eds) Flood risk management: research and practice. Taylor & Francis, London, pp 1193–1197Google Scholar
  34. Roulin E (2007) Skill and relative economic value of medium-range hydrological ensemble predictions. Hydrol Earth Syst Sci 11(2):725–737CrossRefGoogle Scholar
  35. Schwanbeck J, Viviroli D, Weingartner R, Röser I, Trösch J (2007) Prozessbasierte Abschätzung von Extremhochwassern im Einzugsgebiet der Sihl. Projektschlussbericht zum Auftrag des Amtes für Abfall, Wasser, Energie und Luft des Kantons Zürich (AWEL). Bern und Zürich: Geographisches Institut der Universität Bern und TK Consult AGGoogle Scholar
  36. Viviroli D, Zappa M, Gurtz J, Weingartner R (2009) An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environ Model Softw 24(10):1209–1222CrossRefGoogle Scholar
  37. Wieczorek GF (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. In: Costa JE, Wieczorek GF (eds) Debris flows/avalanches: process, recognition, and mitigation: reviews in engineering geology. Geological Society of America, Boulder, COGoogle Scholar
  38. Wilson RC, Mark RK, Barbato G (1993) Operation of a real-time warning system for debris flows in the San Francisco Bay area, California. In: Shen HW, Su ST, Wen F (eds) Hydraulic Engineering ‘93: Proceedings of the 1993 Conference, San Francisco, California, July 25–30, 1993, pp 1908–1913, American Society of Civil EngineersGoogle Scholar
  39. Zappa M, Vogt S (2007) Hochwasservorhersagesysteme der neusten Generation im Praxis-Test. WSL Forum für Wissen 2007, TagungsbandGoogle Scholar
  40. Zappa M, Rhyner J, Gerber M, Egli L, Stöckli U, Hegg C (2006) IFKIS-Hydro MountainFloodWatch—Eine endbenutzer-orientierte Plattform für Hochwasserwarnung. In: Risikomanagement extremer hydrologischer Ereignisse, Beiträge zum Tag der Hydrologie 2006, 22–23 März 2006. Forum für Hydrologie und Wasserbewirtschaftung 15(2):189–200Google Scholar
  41. Zappa M, Rotach MW, Arpagaus M, Dorninger M, Hegg C, Montani A, Ranzi R, Ament F, Germann U, Grossi G, Jaun S, Rossa A, Vogt S, Walser A, Wehrhan J, Wunram C (2008) MAP D-PHASE: real-time demonstration of hydrological ensemble prediction systems. Atmos Sci Lett 9(2):80–87CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hans Romang
    • 1
  • Massimiliano Zappa
    • 3
  • Nadine Hilker
    • 3
  • Matthias Gerber
    • 2
  • François Dufour
    • 2
  • Valérie Frede
    • 4
  • Dominique Bérod
    • 5
  • Matthias Oplatka
    • 6
  • Christoph Hegg
    • 3
  • Jakob Rhyner
    • 2
  1. 1.Federal Office of Meteorology and Climatology MeteoSwissZurichSwitzerland
  2. 2.WSL Institute for Snow and Avalanche Research SLFDavosSwitzerland
  3. 3.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
  4. 4.Axpo AGBadenSwitzerland
  5. 5.Federal Office for the Environment FOENBerneSwitzerland
  6. 6.Department for Wastes, Water, Energy and Air of Canton ZurichZurichSwitzerland

Personalised recommendations