Advertisement

Natural Hazards

, Volume 54, Issue 2, pp 547–562 | Cite as

Submarine landslides at the eastern Sunda margin: observations and tsunami impact assessment

  • Sascha BruneEmail author
  • Stefan Ladage
  • Andrey Y. Babeyko
  • Christian Müller
  • Heidrun Kopp
  • Stephan V. Sobolev
Original Paper

Abstract

Our analysis of new bathymetric data reveals six submarine landslides at the eastern Sunda margin between central Java and Sumba Island, Indonesia. Their volumes range between 1 km³ in the Java fore-arc basin up to 20 km³ at the trench off Sumba and Sumbawa. We estimate the potential hazard of each event by modeling the corresponding tsunami and its run-up on nearby coasts. Four slides are situated remarkably close to the epicenter of the 1977 tsunamigenic Sumba M w  = 8.3 earthquake. However, comparison of documented tsunami run-up heights and arrival times with our modeling results neither allows us to confirm nor can we falsify the hypothesis that the earthquake triggered these submarine landslides.

Keywords

Submarine landslide Tsunami Numerical modeling Indonesia Padang Hazard assessment 

Notes

Acknowledgments

This is publication 25 of the GITEWS project (German Indonesian Tsunami Early Warning System). The project is carried out through a large group of scientists and engineers from GeoForschungsZentrum Potsdam (GFZ) and its partners from DLR, AWI, GKSS, IFM-GEOMAR, UNU, BGR, GTZ, as well as from Indonesian and other international partner institutions. Funding is provided by the German Federal Ministry for Education and Research (BMBF), grants 03TSU01 (GITEWS) and 03G0190 (SINDBAD). We would like to thank two anonymous reviewers for their careful and detailed comments.

Supplementary material

11069_2009_9487_MOESM1_ESM.pdf (540 kb)
Supplementary material (541 KB)

References

  1. Bondevik S, Løvholt F, Harbitz C, Mangerud J, Dawson A, Svendsen JI (2005) The storegga slide tsunami—comparing field observations with numerical simulations. Mar Pet Geol 22:195–208CrossRefGoogle Scholar
  2. Borrero JC, Synolakis CE, Fritz H (2006) Northern sumatra field survey after the December 2004 great sumatra earthquake and Indian Ocean tsunami, great sumatra earthquakes and indian ocean tsunamis of December 26, 2004 and March 28, 2005. Earthq Spectra 22:93–104CrossRefGoogle Scholar
  3. Brune S, Babeyko AY, Gaedicke C, Ladage S (2009) Hazard assessment of underwater landslide-generated tsunamis: a case study in the Padang region, Indonesia. Nat Hazards. doi: 10.1007/s11069-009-9424-x
  4. Eva C, Cattaneo M, Merlanti F (1988) Seismotectonics of the central segment of the Indonesian Arc. Tectonophys 146:241–259CrossRefGoogle Scholar
  5. Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The grand banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215:45–57CrossRefGoogle Scholar
  6. Fritz H, Kongko W, Moore A, McAdoo B, Goff J, Harbitz C, Uslu B, Kaligeris N, Titov V, Synolakis CE (2007) Extreme run-up from the 17 July 2006 Java tsunami. Geophys Res Abstr 9:10765Google Scholar
  7. Geist EL, Parsons T (2006) Probabilistic analysis of tsunami hazards. Nat Hazards 37:277–314CrossRefGoogle Scholar
  8. Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure Part I: modeling, experimental validation, and sensitivity analyses. J Waterway Port Coast Ocean Eng 131(6):283–297CrossRefGoogle Scholar
  9. Gusman AR, Tanioka Y, Matsumoto H, Iwasaki SI (2009) Analysis of the tsunami generated by the great 1977 Sumba earthquake that occurred in Indonesia. Bull Seism Soc Am 99(4):2169–2179. doi: 10.1785/0120080324 CrossRefGoogle Scholar
  10. Hall R (1997) Cenozoic plate tectonic reconstructions of SE Asia. Geol Soc Spec Publ 126:11–23CrossRefGoogle Scholar
  11. Hamzah L, Puspito NT, Imamura F (2000) Tsunami catalog and zones in Indonesia. J Nat Disaster Sci 22(1):25–43CrossRefGoogle Scholar
  12. Harbitz CB (1992) Model simulations of tsunamis generated by the Storegga slides. Mar Geol 105:1–21CrossRefGoogle Scholar
  13. Hébert H, Piatanesi A, Heinrich P, Schindelé F (2002) Numerical modeling of the September 13, 1999 landslide and tsunami on Fatu Hiva Island (French Polynesia). Geophys Res Lett 29(10):1484CrossRefGoogle Scholar
  14. Heine C, Müller RD, Gaina C (2004) Reconstructing the lost Thethys Ocean basin: convergence history of the SE Asian margin and marine gateways. In: Clift P, Wang P, Kuhnt W, Hayes D (eds) Geophysical monograph series vol 149: continent-ocean interactions within East Asian marginal seas. AGU, Washington DC, pp 37–54Google Scholar
  15. Imamura F, Shuto N, Goto C, Ogawa Y (1997) IUGG/IOC Time Project IOC Manuals and Guides No. 35, (UNESCO)Google Scholar
  16. IOC, IHO, BODC (2003) Centenary edition of the GEBCO digital atlas. British Oceanographic Data Centre, LiverpoolGoogle Scholar
  17. ITDB/WLD (2007) Integrated tsunami database for the world ocean, version 6.51 of February 20, 2007. CD-ROM, Tsunami Laboratory, ICMMG SD RAS, Novosibirsk, RussiaGoogle Scholar
  18. ITIC (International Tsunami Information Center) (1977) Tsunami reports No. 1977-12Google Scholar
  19. Kato K, Tsuji Y (1995) Tsunami of the Sumba earthquake of August 19, 1977. J Nat Disaster Sci 17(2):87–100Google Scholar
  20. Kopp H, Kukowski N (2003) Backstop geometry and accretionary mechanics of the Sunda margin. Tectonics 22(6):1072CrossRefGoogle Scholar
  21. Kopp H, Flueh ER, Petersen CJ, Weinrebe W, Wittwer A, Meramex Scientists (2006) The Java margin revisited: evidence for subduction erosion off Java. Earth Planet Sci Lett 242:130–142CrossRefGoogle Scholar
  22. Krüger F, Ohrnberger M (2005) Tracking the rupture of the Mw=9.3 Sumatra earthquake over 1,150 km at teleseismic distance. Nature 435. doi: 10.1038/nature03696
  23. Kukowski N, Hampel A, Hoth S, Bialas J (2008) Morphotectonic and morphometric analysis of the Nazca plate and the adjacent offshore Peruvian continental slope—Implications for submarine landscape evolution. Mar Geol 254:107–120CrossRefGoogle Scholar
  24. Lavigne F, Gomez C, Giffo M, Wassmer P, Hoebreck C, Mardiatno D, Prioyono J, Paris R (2007) Field observations of the 17 July 2006 tsunami in Java. Nat Hazards Earth Syst Sci 7:177–183CrossRefGoogle Scholar
  25. Lynett P, Liu PLF (2002) A numerical study of submarine-landslide-generated waves and run-up. Proc R Soc A 458:2885CrossRefGoogle Scholar
  26. Lynett PJ, Borerro JC, Liu PLF, Synolakis CE (2003) Field survey and numerical simulations: a review of the 1998 papua new guinea tsunami. Pure Appl Geophys 160:2119–2146CrossRefGoogle Scholar
  27. Lynnes CS, Lay T (1988) Source process of the great 1977 Sumba earthquake. J Geophys Res 93(Bll):13,407–13420Google Scholar
  28. Masson DG, Parson LM, Milsom J, Nichols G, Sikumbang N, Dwiyanto B, Kallagher H (1990) Subduction of seamounts at the Java trench: a view with long-range sidescan sonar. Tectonophys 185:51–65CrossRefGoogle Scholar
  29. Masson DG, Harbitz CB, Wynn RB, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Phil Trans R Soc A 364:2009–2039CrossRefGoogle Scholar
  30. Matsumoto T (2007) An underwater landslide or slump on an active submarine fault—A possible source of a devastating tsunami? Eos Trans AGU 88(52), Fall Meet Suppl, Abstract S53A–1018Google Scholar
  31. McAdoo B, Simpson G (2005) Morphometric dating of submarine landslide scarps. Geophys Res Abstr 7, Abstr 00629Google Scholar
  32. Moran K, Tappin D (2006) SEATOS 2005 Cruise Report: sumatra earthquake and tsunami off shore survey (SEATOS). 92 pp. (Online) available at http://ocean.oce.uri.edu/seatos
  33. Müller C, Kopp H, Djajadihardja YS, Barckhausen U, Ehrhardt A, Engels M, Flueh ER, Gaedicke C, Keppler H, Lutz R, Lüschen E, Neben S, Seeber L, Dzulkarnaen DPS (2008) From subduction to collision; The Sunda-Banda Arc transition. Eos, Trans, Am Geophys Union 89:49–50CrossRefGoogle Scholar
  34. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am 75(4):1135–1154Google Scholar
  35. Pelinovsky E, Kurkin A, Zaytsev A, Yalciner A, Imamura F (2006) AVI-NAMI Version 1.2Google Scholar
  36. Rynn J (2002) A preliminary assessment of tsunami hazard and risk in the Indonesian region. Sci Tsunami Hazard 20(4):193Google Scholar
  37. Satake K (1988) Effects of bathymetry on tsunami propagation: application of ray tracing to tsunamis. Pure Appl Geophys 126(1):27–36CrossRefGoogle Scholar
  38. Schlueter HU, Gaedicke C, Roeser HA, Schreckenberger B, Meyer H, Reichert C, Djajadihardja Y, Prexl A (2002) Tectonic features of the southern sumatra-western Java forearc of Indonesia. Tectonics 21(5):15Google Scholar
  39. Simons WJF, Socquet A, Vigny C, Ambrosius BAC, Haji Abu S, Promthong C, Subarya C, Sarsito DA, Matheussen S, Morgan P, Spakman W (2007) A decade of GPS in Southeast Asia: resolving sundaland motion and boundaries. J Geophys Res 112:B06420. doi: 10.1029/2005JB003868 CrossRefGoogle Scholar
  40. Spence W (1986) The 1977 Sumba earthquake series: evidence for slab pull force acting at a subduction zone. J Geophys Res 91:7225–7239CrossRefGoogle Scholar
  41. Sweet S, Silver EA (2003) Tectonics and slumping in the source region of the 1998 papua new guinea tsunami from seismic reflection images. Pure Appl Geophys 160:1945–1968CrossRefGoogle Scholar
  42. Synolakis CE, Bardet JP, Borrero JC, Davies HL, Okal EA, Silver EA, Sweet S, Tappin DR (2002) The slump origin of the 1998 papua new Guinea tsunami. Proc R Soc Lond A 458:763–789CrossRefGoogle Scholar
  43. Tappin DR, Matsumoto T, Watts P, Satake K, McMurtry GM, Matsuyama M, Lafoy Y, Tsuji Y (1999) Sediment slump likely caused 1998 papua new Guinea tsunami. Eos Trans AGU 80(30):329CrossRefGoogle Scholar
  44. Tappin DR, McNeil LC, Henstock T, Mosher D (2007) Mass wasting processes—offshore Sumatra. In: Lykousis V, Sakellariou D, Locat J (eds) Advances in natural and technological hazards research vol 27: submarine mass movements and their consequences. Springer, Dordrecht, pp 327–336CrossRefGoogle Scholar
  45. Titov VV, Synolakis CE (1997) Extreme inundation flows during the Hokkaido-Nansei-Oki tsunami. Geophys Res Lett 24(11):1315–1318CrossRefGoogle Scholar
  46. Tsuji Y, Imamura F, Matsutomi H, Synolakis CE (1995a) Field survey of the east java earthquake and tsunami of June 3, 1994. Pure Appl Geophys 144(3/4):839CrossRefGoogle Scholar
  47. Tsuji Y, Matsutomi H, Imamura F, Takeo M (1995b) Damage to coastal villages due to the 1992 flores island earthquake tsunami. Pure Appl Geophys 144(3/4):481CrossRefGoogle Scholar
  48. Tsuji Y, Namegaya Y, Matsumoto H, Iwasaki SI, Kanbua W, Sriwichai M, Meesuk V (2006) The 2004 Indian tsunami in Thailand: surveyed runup heights and tide gauge records. Earth Planet Space 58:223–232Google Scholar
  49. van der Werff W (1995) Structure and morphotectonics of the accretionary prism along the Eastern Sunda-Western Banda Arc. J Southeast Asian Earth Sci 11:309–322CrossRefGoogle Scholar
  50. Ward SN, Asphaug E (2003) Asteroid impact tsunami of 16 March, 2880. Geophys J Int 153:F6–F10CrossRefGoogle Scholar
  51. Watts P, Grilli ST, Kirby JT, Fryer GJ, Tappin DR (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat Hazards Earth Syst Sci 3:391–402CrossRefGoogle Scholar
  52. Watts P, Grilli ST, Tappin DR, Fryer GJ (2005) Tsunami generation by submarine mass failure. II: predictive equations and case studies. J Waterway Port Coast Ocean Eng 131:283CrossRefGoogle Scholar
  53. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seism Soc Am 84(4):974–1002Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sascha Brune
    • 1
    Email author
  • Stefan Ladage
    • 2
  • Andrey Y. Babeyko
    • 1
  • Christian Müller
    • 2
  • Heidrun Kopp
    • 3
  • Stephan V. Sobolev
    • 1
  1. 1.Helmholtz Centre Potsdam GFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Federal Institute for Geosciences and Natural Resources (BGR)HannoverGermany
  3. 3.Leibniz Institute of Marine Sciences at the Christian-Albrechts University of Kiel (IFM-GEOMAR)KielGermany

Personalised recommendations