Natural Hazards

, Volume 54, Issue 2, pp 469–481 | Cite as

Repeated glacial-lake outburst floods in Patagonia: an increasing hazard?

  • Alejandro DussaillantEmail author
  • Gerardo Benito
  • Wouter Buytaert
  • Paul Carling
  • Claudio Meier
  • Fabián Espinoza
Original Paper


Five similar glacial-lake outburst floods (GLOFs) occurred in April, October, December 2008, March and September 2009 in the Northern Patagonia Icefield. On each occasion, Cachet 2 Lake, dammed by the Colonia Glacier, released circa 200-million m3 water into the Colonia River. Refilling has occurred rapidly, such that further outbreak floods can be expected. Pipeflow calculations of the subglacial tunnel drainage and 1D hydraulic models of the river flood give consistent results, with an estimated peak discharge surpassing 3,000 m3 s−1. These floods were larger in magnitude than any flood on record, according to gauged data since 1963. However, geomorphological analysis of the Colonia valley shows physical evidence of former catastrophic outburst floods from a larger glacial-lake, with flood discharges possibly as high as 16,000 m3 s−1. Due to potential impacts of climate change on glacier dynamics in the area, jökulhlaups may increase future flood risks for infrastructure and population. This is particularly relevant in view of the current development of hydropower projects in Chilean Patagonia.


Jökulhlaup Outburst flood Patagonia Glacial-lake Climate change 

List of symbols


Empirical coefficients for Clague-Mathews and Walder and Costa equations


Head loss


Friction factor


Head loss coefficient


Diameter of conduit


Hydraulic radius = D/4Φ


\( {\text{Bulk}}\,{\text{flow}}\,{\text{velocity}} = {Q \mathord{\left/ {\vphantom {Q {{{\pi D^{2} } \mathord{\left/ {\vphantom {{\pi D^{2} } {4\phi }}} \right. \kern-\nulldelimiterspace} {4\phi }}}}} \right. \kern-\nulldelimiterspace} {{{\pi D^{2} } \mathord{\left/ {\vphantom {{\pi D^{2} } {4\phi }}} \right. \kern-\nulldelimiterspace} {4\phi }}}} \)




Acceleration due to gravity


Equivalent sand grain roughness for ice walls


Kinematic viscosity


\( {\text{Reynolds}}\,{\text{number}} = {{UD} \mathord{\left/ {\vphantom {{UD} \nu }} \right. \kern-\nulldelimiterspace} \nu } \)


Pipe shape factor



PBCT-Conicyt project ACI-70, with funding provided by the World Bank, supported this preliminary research. We also thank the field support from Instituto de Investigaciones en Ecosistemas Patagónicos ( and Dirección General de Aguas, DGA.


  1. Alho P, Aaltonen J (2008) Comparing a 1D hydraulic model with a 2D hydraulic model for the simulation of extreme glacial outburst. Hydrol Proc 22:1537–1547CrossRefGoogle Scholar
  2. Aniya M (2007) Glacier variations of Hielo Patagónico Norte, Chile, for 1944/45–2004/05. Bull Glaciol Res 24:59–70Google Scholar
  3. Aniya M, Naruse R (2001) Overview of glaciological project in Patagonia during 1998 and 1999: Holocene glacier variations and their mechanisms. Bull Glaciol Res 18:71–78Google Scholar
  4. Araya R (2006) Proyecto Hidroeléctrico Aysén, Evacuadores de Crecidas de las Presas, Conceptos Básicos para Definir Caudales de Diseño, in Spanish. Ingendesa company document 05390-09-02-IPRS-ITE-00X, 34 ppGoogle Scholar
  5. Barnes HH (1967) Roughness characteristics of natural channels. US Geological Survey Water-Supply paper 1849, 213 pp, USGS, DenverGoogle Scholar
  6. Carey M (2005) Living and dying with glaciers: people’s historical vulnerability to avalanches and outburst floods in Perú. Glob Planet Change 47(2–4):122–134CrossRefGoogle Scholar
  7. Casassa G, Leidich J, Rivera A, Wendt J, Escobar F, Guzmán F, Carrasco J, López P (2008) Sudden drainage of glacial Lake Cachet 2, Patagonia. EGU von Humboldt conference, Nov 2008, Santiago, ChileGoogle Scholar
  8. Desloges JR, Church M (1992) Geomorphic implications of glacier outburst flooding: Noeick River valley, British Columbia. Can J Earth Sci 29:551–564Google Scholar
  9. Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot. Institute of Arctic and Alpine Research, University of Colorado, Boulder, USA. Occasional Paper 58. INSTAAR/OP-58 ISSN 0069-6145, 118 ppGoogle Scholar
  10. Evans S, Clague J (1994) Recent climate change and catastrophic geomorphic processes in mountain environments. Geomorphology 10:107–128CrossRefGoogle Scholar
  11. Fernández P, Fornero L, Maza J, Rollan RA, Yáñez H, Núñez MS, de Alpeggiani EB (1985) Hidrología del río Mendoza: simulación matemática del las hipótesis de rotura del dique natural formado por el Glaciar Grande del Nevado del Plomo y del traslado de las crecientes desde el glaciar hasta 200 metros aguas abajo de Alvarez Condarco. Instituto Nacional de Ciencia y Técnicas Hídricas, Centro Regional Andino, Mendoza, Argentina, 135 ppGoogle Scholar
  12. Fernández PC, Fornero L, Maza J, Yañez H (1991) Simulation of flood waves from outburst of glacier-dammed lake. J Hydraul Eng 117:42–53CrossRefGoogle Scholar
  13. Harrison S, Winchester V (2000) Nineteenth- and twentieth-century glacier fluctuations and climatic implications in the Arco and Colonia valleys, Hielo Patagónico Norte, Chile. Arct Antarct Alp Res 32:55–63CrossRefGoogle Scholar
  14. Harrison S, Glasser N, Winchester V, Haresign E, Warren C, Jansson KA (2006) Glacial lake outburst flood associated with recent mountain glacier retreat, Patagonian Andes. Holocene 16:611–620CrossRefGoogle Scholar
  15. HEC (1995) HEC-RAS, river analysis system, hydraulics reference manual. Hydrologic Engineering Center, DavisGoogle Scholar
  16. HidroAysén (2008) Estudio de Impacto Ambiental Proyecto hidroAysén. Environmental Impact Study available in Spanish at
  17. ICOLD (1995) Dam failures. Statistical analysis bulletin 99. ICOLD, ParisGoogle Scholar
  18. Kessler MA, Anderson RS (2004) Testing a numerical glacial hydrological model using spring speed-up events and outburst floods. Geophs Res Lett 31:L18503. doi: 10.1029/2004GL020622 CrossRefGoogle Scholar
  19. Lliboutry L (1956) Nieves y Glaciares de Chile, fundamento de glaciologia. Ediciones de la Universidad de Chile, Santiago, p 417 (in Spanish)Google Scholar
  20. Mäkinen J, Palmu JP (2008) Collapse of sediment-filled crevasses associated with floods and mass flows in the proximal zone of the Pernunnummi sandurdelta, III Salpausselkä, SW Finland. Quat Sci Rev 27:1992–2011CrossRefGoogle Scholar
  21. Masiokas MH, Villalba R, Luckman RH, Lascano ME, Delgado S, Stepanek P (2008) 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Global Planet Change 60:85–100CrossRefGoogle Scholar
  22. Ng F, Björnsson H (2003) On the Clague-Mathews relation for jökulhlaups. J Glaciol 49(165):161–172CrossRefGoogle Scholar
  23. Old GH, Lawler DM, Snorrason A (2005) Discharge and suspended sediment dynamics during two jökulhaups in the Skafta′ River, Iceland. Earth Surf Process Landf 30(11):1441–1460CrossRefGoogle Scholar
  24. Osti R, Egashira S (2009) Hydrodynamic characteristics of the Tam Pokhari Glacial Lake outburst flood in the Mt. Everest region, Nepal. Hydrol Proc. doi: 10.1002/hyp.7405
  25. Peña H, Escobar F (1983a) Análisis de una crecida por vaciamiento de una represa glacial, VI Congreso, Sociedad Chilena de Ingeniería Hidráulica, pp 375–392Google Scholar
  26. Peña TH, Escobar CF (1983b) Análisis de las crecidas de Río Paine, XII región. Publicación Interna Estudios Hidrológicos No. 83/7, Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile, 78 pp (in Spanish)Google Scholar
  27. Peña H, Escobar F (1987) Análisis del aluvión de mayo de 1985 del río Manflas, cuenca del río Copiapó. Publicacion Interna Estudios Hidrológicos 87/3, Dirección General de Aguas, Ministerio de Obras Públicas, Chile, 14 pp (in Spanish)Google Scholar
  28. Rasmussen L, Conway H, Raymond C (2007) Influence of upper air conditions on Patagonia Icefields. Global Planet Change. doi: 10.1016/j.gloplacha.2006.11.025
  29. Richardson SD, Reynolds JM (2000) An overview of glacial hazards in the Himalayas. Quat Int 65–66:31–47CrossRefGoogle Scholar
  30. Roberts MJ (2005) Jökulhlaups: a reassessment of floodwater flow through glaciers. Rev Geophys 43:RG1002CrossRefGoogle Scholar
  31. Russell AJ, Roberts MJ, Fay H, Marren PM, Cassidy NJ, Tweed FS, Harris T (2006) Icelandic jökulhlaup impacts: Implication for ice-sheet hydrology, sediment transfer and geomorphology. Geomorphology 75:33–64Google Scholar
  32. Schneider C, Gies D (2004) Effects of El Niño-Southern Oscillation on southernmost South America precipitation at 53°S revealed from NCEP-NCAR re-analyses and weather station data. Int J Climatol 24:1057–1076CrossRefGoogle Scholar
  33. Tanaka K (1980) Geographic contribution to a periglacial study of the Hielo Patagónico Norte with special reference to the glacial outburst originated from Glacier-Dammed Lago Arco, Chilean Patagonia. Centre Co Ltd, Tokyo 97 ppGoogle Scholar
  34. Villalba R, Lara A, Boninsegna JA, Masiokas M, Delgado S, Aravena JC, Roig FA, Schmelter A, Wolodarsky A, Ripalts A (2003) Large-scale temperature changes in the southern Andes: 20th-century variations in the context of the past 400 years. Clim Change 59:177–232CrossRefGoogle Scholar
  35. Walder JS, Costa JE (1996) Outburst floods from glacier-dammed lakes: the effect of mode of lake drainage on flood magnitude. Earth Surf Proc Land 21:701–723CrossRefGoogle Scholar
  36. Winchester V, Harrison S (2000) Dendrochronology and lichenometry: colonization, growth rates and dating of geomorphological events on the east side of the North Patagonian Icefield, Chile. Geomorphology 34:181–194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alejandro Dussaillant
    • 1
    • 2
    • 3
    • 8
    Email author
  • Gerardo Benito
    • 4
  • Wouter Buytaert
    • 5
    • 6
  • Paul Carling
    • 3
  • Claudio Meier
    • 1
    • 8
  • Fabián Espinoza
    • 7
  1. 1.Ingeniería Civil, Barrio UniversitarioUniversidad De ConcepciónConcepciónChile
  2. 2.Centro Ambiental EULAUniversidad de ConcepciónConcepciónChile
  3. 3.School of GeographyUniversity of SouthamptonSouthamptonUK
  4. 4.Centro de Ciencias MedioambientalesCSICMadridSpain
  5. 5.School of Geographical SciencesUniversity of BristolBristolUK
  6. 6.Imperial CollegeLondonUK
  7. 7.Dirección General de AguasRegión de AysénCoyhaiqueChile
  8. 8.Centro de Investigaciones en Ecosistemas de la PatagoniaCoyhaiqueChile

Personalised recommendations