Natural Hazards

, Volume 52, Issue 1, pp 1–29 | Cite as

Landslide failure and runout susceptibility in the upper T. Ceno valley (Northern Apennines, Italy)

  • A. Clerici
  • S. Perego
  • C. Tellini
  • P. Vescovi
Original Paper


The ‘Conditional Analysis’ multivariate statistical method was used to evaluate Landslide Susceptibility (LS) in an area of the Italian Northern Apennines. An Inventory Landslide map, containing 518 landslides, and seven landslide-related factor maps (lithology, elevation, slope angle and aspect, profile and tangential curvatures, bedding/slope relations) were processed using a shell script that automatically carries out the whole procedure producing a final map with five Failure Susceptibility (FS) classes. The procedure was applied separately to the most frequent landslide typologies, namely, rotational slides, flows, and complex landslides, and for each of the 127 different combinations of the seven factors. To define areas potentially affected by the down-slope movement of the depleted material, four runout belts with different probabilities were distinguished around the classes with highest FS. By overlaying the resulting map with the map of the elements at risk, namely, settlements, roads, and streams, the spatial risk in the area was assessed.


Landslide susceptibility Spatial risk GIS GRASS Shell script Northern Apennines Italy 



This study was supported by funds of the Parma University research project FIL 2006 “Evoluzione geomorfologica tardo-quaternaria: casi di studio nelle Alpi Marittime e nell’Appennino settentrionale” (Coordinator S. Perego). The authors extend their thanks to E. Masciandaro and C. Morganti for their help in data acquisition and editing, D. Peis for his kind assistance in solving computer problems, E. Masini for drawing Fig. 1, and P. Sears for his valuable aid in translation. We are grateful to the anonymous referees for their valuable suggestions and constructive comments.


  1. Akgün A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol 54(6):1127–1143. doi: 10.1007/s00254-007-0882-8 CrossRefGoogle Scholar
  2. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58(1):21–44. doi: 10.1007/s100640050066 CrossRefGoogle Scholar
  3. Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Comput Geosci 24(4):373–385. doi: 10.1016/S0098-3004(97)00117-9 CrossRefGoogle Scholar
  4. Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31. doi: 10.1016/j.geomorph.2004.06.010 CrossRefGoogle Scholar
  5. Bednárik M, Clerici A, Tellini C, Vescovi P (2005) Using GIS GRASS in evaluation of landslide susceptibility in Termina valley in the Northern Apennines (Italy). In: Moser M (ed) Fifteenth conference on engineering geology, Erlangen (Germany), 6–9 April 2005, pp 19–24Google Scholar
  6. Binaghi E, Luzi L, Madella P, Pergalani F, Rampini A (1998) Slope instability zonation: a comparison between certainty factor and fuzzy Dempster-Shafer approaches. Nat Hazards 17(1):77–97. doi: 10.1023/A:1008001724538 CrossRefGoogle Scholar
  7. Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS. Computer methods in the geosciences, vol 13, Pergamon, UKGoogle Scholar
  8. Brabb EE (1984) Innovative approaches to landslide hazard mapping. In: Proceedings of IV international symposium landslides, vol 1, Toronto, pp 307–324Google Scholar
  9. Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci 5:853–862Google Scholar
  10. Carrara A, Cardinali M, Guzzetti F (1992) Uncertainty in assessing landslide hazard and risk. ITC J 2:172–183Google Scholar
  11. Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer Academic Publisher, Dordrecht, pp 135–175Google Scholar
  12. Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65(4):341–411. doi: 10.1007/s10064-006-0064-z CrossRefGoogle Scholar
  13. Chung C-J (2006) Using likelihood ratio functions for modeling the conditional probability of occurrence of future landslides for risk assessment. Comput Geosci 32(8):1052–1068. doi: 10.1016/j.cageo.2006.02.003 CrossRefGoogle Scholar
  14. Chung CF, Fabbri A (1993) The representation of geoscience information for data integration. Nonrenew Resour 2(2):122–139. doi: 10.1007/BF02272809 CrossRefGoogle Scholar
  15. Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sens 65(12):1389–1399Google Scholar
  16. Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472. doi: 10.1023/B:NHAZ.0000007172.62651.2b CrossRefGoogle Scholar
  17. Chung C-J, Fabbri AG (2008) Predicting landslides for risk analysis—spatial models tested by a cross-validation procedure. Geomorphology 94:438–452. doi: 10.1016/j.geomorph.2006.12.036 CrossRefGoogle Scholar
  18. Chung CF, Fabbri AG, van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer Academic Publisher, Dordrecht, pp 107–133Google Scholar
  19. Chung CF, Kojma H, Fabbri AG (2002) Stability analysis of prediction models for landslide hazard mapping. In: Allison RJ (ed) Applied geomorphology: theory and practice. Wiley, New York, pp 3–19Google Scholar
  20. Clerici A (2002) A GRASS GIS based shell script for landslide susceptibility zonation. In: Ciolli M, Zatelli P (eds) Open source free software GIS-GRASS users conference, Trento, Italy.
  21. Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364. doi: 10.1016/S0169-555X(02)00079-X CrossRefGoogle Scholar
  22. Clerici A, Perego S, Tellini C, Vescovi P (2006) A GIS-based automated procedure for landslide susceptibility mapping by the conditional analysis method: the Baganza valley case study (Italian Northern Apennines). Environ Geol 50(7):941–961. doi: 10.1007/s00254-006-0264-7 CrossRefGoogle Scholar
  23. Conoscenti C, Di Maggio C, Rotigliano E (2008) GIS-analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology 94:325–339. doi: 10.1016/j.geomorph.2006.10.039 CrossRefGoogle Scholar
  24. Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271. doi: 10.1139/t96-005 CrossRefGoogle Scholar
  25. Corominas J, Copons R, Vilaplana JM, Altimir J, Amigo J (2003) Integrated landslide susceptibility analysis and hazard assessment in the principality of Andorra. Nat Hazards 30(3):421–435. doi: 10.1023/B:NHAZ.0000007094.74878.d3 CrossRefGoogle Scholar
  26. Cruden DM, Hu XQ (1996) Hazardous modes of rock slope movement in the Canadian Rockies. Environ Eng Geosci 2(4):507–516Google Scholar
  27. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation, Special Report 247, Transportation Research Board, National Research Council, Washington, pp 36–75Google Scholar
  28. Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228. doi: 10.1016/S0169-555X(01)00087-3 CrossRefGoogle Scholar
  29. Davis JC, Chung C-J, Ohlmacher GC (2006) Two models for evaluating landslide hazards. Comput Geosci 32(8):1120–1127. doi: 10.1016/j.cageo.2006.02.006 CrossRefGoogle Scholar
  30. Donati L, Turrini MC (2002) An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: application to an area of the Apennines (Valnerina; Perugia, Italy). Eng Geol 63(3):277–289. doi: 10.1016/S0013-7952(01)00087-4 CrossRefGoogle Scholar
  31. Elter P, Grasso M, Parotto M, Vezzani L (2003) Structural setting of the Apennine-Maghrebian thrust belt. Episodes 26:205–211Google Scholar
  32. Ermini L, Catani F, Casagli N (2005) Artificial neural network applied to landslide susceptibility assessment. Geomorphology 66:327–343. doi: 10.1016/j.geomorph.2004.09.025 CrossRefGoogle Scholar
  33. Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272CrossRefGoogle Scholar
  34. Fernandez T, Irigaray C, El Hamdouni R, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS application to the Contraviesa Area (Granada, Spain). Nat Hazards 30(3):297–308. doi: 10.1023/B:NHAZ.0000007092.51910.3f CrossRefGoogle Scholar
  35. GRASS Development Team (2008) Geographic Resources Analysis Support System (GRASS), GNU General Public License.
  36. Gullà G, Antronico L, Iaquinta P, Terranova O (2008) Susceptibility and triggering scenarios at a regional scale for shallow landslides. Geomorphology 99:39–58. doi: 10.1016/j.geomorph.2007.10.005 CrossRefGoogle Scholar
  37. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. doi: 10.1016/S0169-555X(99)00078-1 CrossRefGoogle Scholar
  38. Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M (2006a) Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Nat Hazards Earth Syst Sci 6(1):115–131Google Scholar
  39. Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006b) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184. doi: 10.1016/j.geomorph.2006.04.007 CrossRefGoogle Scholar
  40. Havenith HB, Strom A, Caceres F, Pirard E (2006a) Analysis of landslide susceptibility in the Suusamyr region, Tien Shan: statistical and geotechnical approach. Landslides 3(1):39–50. doi: 10.1007/s10346-005-0005-0 CrossRefGoogle Scholar
  41. Havenith HB, Torgoev I, Meleshko A, Alioshin Y, Torgoev A, Danneels G (2006b) Landslides in the Mailuu-Suu Valley, Kyrgyzstan—hazards and impacts. Landslides 3(2):137–147. doi: 10.1007/s10346-006-0035-2 CrossRefGoogle Scholar
  42. Irigaray C, Fernandez T, El Hamdouni R, Chacón J (2007) Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain). Nat Hazards 41(1):61–79. doi: 10.1007/s11069-006-9027-8 CrossRefGoogle Scholar
  43. Jaboyedoff M, Baillifard F, Philippossian F, Rouiller J-D (2004) Assessing fracture occurrence using “weighted fracturing density”: a step towards estimating rock instability hazard. Nat Hazards Earth Syst Sci 4:83–94Google Scholar
  44. Komac M (2006) A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74:7–28. doi: 10.1016/j.geomorph.2005.07.005 CrossRefGoogle Scholar
  45. Lopez HJ, Zink JA (1991) GIS-assisted modelling of soil-induced mass movement hazards: a case study of the upper Coello river basin, Tolima, Colombia. ITC J 4:202–220Google Scholar
  46. Mitášová H, Hofierka J (1993) Interpolation by regularized spline with tension: II Application to terrain modeling and surface geometry analysis. Math Geol 25(6):657–669. doi: 10.1007/BF00893172 CrossRefGoogle Scholar
  47. Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94:401–418. doi: 10.1016/j.geomorph.2006.10.036 CrossRefGoogle Scholar
  48. Neteler M, Mitasova H (2008) Open source GIS: a GRASS GIS approach, 3rd edn. Springer, BerlinGoogle Scholar
  49. Neuhäuser B, Terhorst B (2007) Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology 86:12–24. doi: 10.1016/j.geomorph.2006.08.002 CrossRefGoogle Scholar
  50. Ohlmacher GC (2007) Plan curvature and landslide probability in regions dominated by earth flows and earth slides. Eng Geol 91(2):117–134. doi: 10.1016/j.enggeo.2007.01.005 CrossRefGoogle Scholar
  51. Remondo J, Gonzales A, Díaz De Terán JR, Cendrero A, Fabbri A, Chung CF (2003) Validation of landslide susceptibility maps; examples and applications from a case study in Northern Spain. Nat Hazards 30(3):437–449. doi: 10.1023/B:NHAZ.0000007201.80743.fc CrossRefGoogle Scholar
  52. Remondo J, Bonachea J, Cendrero A (2005) A statistical approach to landslide risk modelling at basin scale: from landslide susceptibility to quantitative risk assessment. Landslides 2(4):321–328. doi: 10.1007/s10346-005-0016-x CrossRefGoogle Scholar
  53. Santacana N, Corominas J (2002) Example of validation of landslide susceptibility maps. In: Rybář J, Stemberk J, Wagner P (eds) First European conference on landslides, Prague, pp 305–310Google Scholar
  54. Soeters R, van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation, Special Report 247, Transportation Research Board, National Research Council, Washington, pp 129–177Google Scholar
  55. Süzen ML, Doyuran V (2004a) Data-driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71(3):303–321. doi: 10.1016/S0013-7952(03)00143-1 CrossRefGoogle Scholar
  56. Süzen ML, Doyuran V (2004b) A comparison of the GIS-based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45(5):665–679. doi: 10.1007/s00254-003-0917-8 CrossRefGoogle Scholar
  57. Tellini C, Chelli A (2003) Ancient and recent landslide occurrences in the Emilia Apennines (Northern Apennines, Italy). Workshop on geomorphological sensitivity and system response, Camerino-Modena Apennines (Italy), 4–9 July 2003, pp 105–114Google Scholar
  58. Tellini C, Mandrone G, Chelli A (2002) The reactivation of the historical Tosca landslide (Parma Province, northern Apennines, Italy). In: Delahaye D, Levoy F, Maquaire O (eds) Geomorphology: from expert opinion to modelling, Strasbourg, France, 26–27 April 2002Google Scholar
  59. Thiery Y, Malet J-P, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92:38–59. doi: 10.1016/j.geomorph.2007.02.020 CrossRefGoogle Scholar
  60. van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still difficult? Bull Eng Geol Environ 65:167–184. doi: 10.1007/s10064-005-0023-0 CrossRefGoogle Scholar
  61. Vescovi P (2002) Foglio 216 “Borgo Val di Taro” della Nuova Carta Geologica d’Italia 1:50.000 (Sheet 216 “Borgo Val di Taro” of the New Geological Map of Italy 1:50,000) Servizio Geologico d’Italia, RomaGoogle Scholar
  62. Vijith H, Madhu G (2008) Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS. Environ Geol 55(7):1397–1405. doi: 10.1007/s00254-007-1090-2 CrossRefGoogle Scholar
  63. Zêzere JL, Ferreira AB, Rodrigues ML (1999) The role of conditioning and triggering factors in the occurrence of landslides: a case study in the area north of Lisbon (Portugal). Geomorphology 30:133–146. doi: 10.1016/S0169-555X(99)00050-1 CrossRefGoogle Scholar
  64. Zêzere JL, Trigo RM, Trigo IF (2005) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation Source. Nat Hazards Earth Syst Sci 5(3):331–344CrossRefGoogle Scholar
  65. Zêzere JL, Oliveira SC, Garcia RAC, Reis E (2007) Landslide risk analysis in the area North of Lisbon (Portugal): evaluation of direct and indirect costs resulting from a motorway disruption by slope movements. Landslides 4(2):123–136. doi: 10.1007/s10346-006-0070-z CrossRefGoogle Scholar
  66. Zhou CH, Lee CF, Li J, Xu ZW (2002) On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geomorphology 43:197–207. doi: 10.1016/S0169-555X(01)00130-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Dipartimento di Scienze della TerraUniversità degli Studi di ParmaParmaItaly

Personalised recommendations