Natural Hazards

, Volume 49, Issue 3, pp 541–563 | Cite as

Comparison of risk from pyroclastic density current hazards to critical infrastructure in Mammoth Lakes, California, USA, from a new Inyo craters rhyolite dike eruption versus a dacitic dome eruption on Mammoth Mountain

  • Grant Kaye
  • Jim Cole
  • Andrew King
  • David Johnston
Original Paper


Renewed volcanic activity near Mammoth Lakes, California, in the form of dome-collapse pyroclastic density currents (PDCs) from either a new eruption at Mammoth Mountain or the Inyo craters would pose a significant hazard to critical infrastructure there. This paper compares the risk from PDC impact hazards upon selected critical infrastructure from: (1) a 100 m tall dacite dome on Mammoth Mountain and (2) three 200 m tall rhyolite domes at the southern end of the Inyo craters. For each scenario, maximum estimated dynamic pressure and velocity from two PDC volumes (106 and 107 m3) are modeled with the EXPLORIS PDC software (Toyos et al. Nat Hazards 41(1):99–112, 2007). Risk to critical infrastructure from Mammoth Mountain PDCs would be much greater than the Inyo PDCs because of both location and the greater kinetic energy of the Mammoth PDC material, providing comparative insight to planners should a real eruption at one location or the other be forthcoming.


Mammoth Mountain Long Valley Caldera Volcanic hazards Volcanic risk assessment 



The authors would like to thank Tracey Fuller and Brian Barnock for lodging in Mammoth Lakes in 2006 and 2007, Jim Cousins of GNS Science, Sally Kaye and Dr. Kirsten Finnis for editorial review, Robin Pringle for help with adapting EXPLORIS PDC for ArcGIS 9.0, Dr. Dave Hill of the USGS for discussion pertaining to volcanology in Mammoth, and Dr. Paul Cole for providing the EXPLORIS PDC software. The first author was supported by an Education New Zealand International Doctoral Research Scholarship, and a University of Canterbury Doctoral Scholarship. The authors thank Ms. Heidi Kreibich and two anonymous reviewers for their comments.


  1. Akkar S, Sucuoglu H, Yakut A (2005) Displacement-based fragility functions for low- and mid-rise ordinary concrete buildings. Earthq Spectra 21(4):901–927. doi: 10.1193/1.2084232 CrossRefGoogle Scholar
  2. Bailey R (1976) Volcanism, structure, and geochronology of the Long Valley Caldera, Mono County, California. J Geophys Res 81:104–122CrossRefGoogle Scholar
  3. Bailey R (1989) Geologic map of the Long Valley Caldera, Mono–Inyo craters volcanic chain, and vicinity, eastern California. US Geol Surv Misc Inv Map I–1933Google Scholar
  4. Bailey R, Dalrymple G, Lanphere M (1976) Volcanism, structure, and geochronology of Long Valley Caldera, Mono County, California. J Geophys Res 81(5):725–744. doi: 10.1029/JB081i005p00725 CrossRefGoogle Scholar
  5. Barmin A, Melnik O, Sparks R (2002) Periodic behavior in lava dome eruptions. Earth Planet Sci Lett 199:173–184. doi: 10.1016/S0012-821X(02)00557-5 CrossRefGoogle Scholar
  6. Baxter P, Boyle R, Cole P, Neri A, Spence R, Zuccaro G (2005) The impacts of pyroclastic surges on buildings at the eruption of the Soufriere Hills volcano, Montserrat. Bull Volcanol 67:292–313. doi: 10.1007/s00445-004-0365-7 CrossRefGoogle Scholar
  7. Blong R (1984) Volcanic hazards: a sourcebook on the effects of eruptions. Academic Press, Orlando, FloridaGoogle Scholar
  8. Blong R (2000) Volcanic hazards and risk management. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, Orlando, FloridaGoogle Scholar
  9. Chiarle M, Iannotti S, Mortara G, Deline P (2007) Recent debris flow occurrences associated with glaciers in the Alps. Glob Planet Change 56(1–2):123–136. doi: 10.1016/j.gloplacha.2006.07.003 CrossRefGoogle Scholar
  10. Clarke A, Voight B (2000) Pyroclastic density current dynamic pressure from aerodynamics of tree or pole blow down. J Geophys Res 100:395–412Google Scholar
  11. Cole J (1990) Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand. Bull Volcanol 52:445–459. doi: 10.1007/BF00268925 CrossRefGoogle Scholar
  12. Cole P, Calder E, Druitt T, Hoblitt R, Robertson R, Sparks R, Young S (1998) Pyroclastic flows generated by gravitational instability of the 1996–1997 lava dome of Soufriere Hills, Montserrat. Geophys Res Lett 25:3425–3428. doi: 10.1029/98GL01510 CrossRefGoogle Scholar
  13. Cole J, Milner D, Spinks K (2005) Calderas and caldera structures: a review. Earth Sci Rev 69:1–26. doi: 10.1016/j.earscirev.2004.06.004 CrossRefGoogle Scholar
  14. Cousins W (2004) Towards a first-order earthquake loss model for New Zealand. In: Gregory G (ed) Getting the message across and moving ahead: conference 2004 technical papers. New Zealand Society for Earthquake Engineering, Wellington, New Zealand, p 8 Google Scholar
  15. Dobran F, Neri A, Todesco M (1994) Assessing the pyroclastic flow hazard at Vesuvius. Nature 10:551. doi: 10.1038/367551a0 CrossRefGoogle Scholar
  16. Dowrick D, Rhoades D (2000) Earthquake damage and risk experience and modeling in New Zealand. In: Proceedings of the 12th world conference on earthquake engineering, Auckland, 30 January–4 February, Paper No. 403Google Scholar
  17. Esposti Ongaro T, Neri A, Todesco M, Macedonio G (2002) Pyroclastic flow hazard analysis at Vesuvius (Italy) by using numerical modeling II Analysis of flow variables. Bull Volcanol 64:178–191. doi: 10.1007/s00445-001-0190-1 CrossRefGoogle Scholar
  18. Farrar C, Sorey M, Evans W, Howle J, Kerr B, Kennedy B, King C, Southon J (1995) Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest. Nature 336:675–678. doi: 10.1038/376675a0 CrossRefGoogle Scholar
  19. Fisher R, Heiken G (1982) Mt. Pelée, Martinique: May 8 and 20 pyroclastic flows and surges. J Volcanol Geotherm Res 13:339–371. doi: 10.1016/0377-0273(82)90056-7 CrossRefGoogle Scholar
  20. Foshag W, Gonzalez-Reyna J (1956) Birth and development of Paricutin volcano. US Geol Surv Bull 965-D:355–489Google Scholar
  21. Glasstone S, Dolan P (1977) Effects of nuclear weapons, 3rd edn. Department of Defense, Washington, DCGoogle Scholar
  22. Gurioli L, Pareschi M, Zanella E, Lanza R, Delicua E, Bisson M (2005) Interaction of pyroclastic density currents with human settlements: evidence from ancient Pompeii. Geology 33(6):441–444. doi: 10.1130/G21294.1 CrossRefGoogle Scholar
  23. Hayashi J, Self S (1992) A comparison of pyroclastic flow and debris avalanche mobility. J Geophys Res 97(B6):9063–9071. doi: 10.1029/92JB00173 CrossRefGoogle Scholar
  24. Herd R, Edmunds M, Bass V (2005) Catastrophic lava dome failure at Soufriere Hills volcano, Montserrat, 12–13 July 2003. J Volcanol Geotherm Res 148:234–252. doi: 10.1016/j.jvolgeores.2005.05.003 CrossRefGoogle Scholar
  25. Hildreth W (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J Geophys Res 136:169–198Google Scholar
  26. Hill D (1996) Earthquakes and carbon dioxide beneath Mammoth Mountain California. Seismol Res Lett 67:8–15Google Scholar
  27. Hill D (2006) Unrest in Long Valley Caldera, California, 1978–2004. Geol Soc Lond Spec Publ 269:1–24. doi: 10.1144/GSL.SP.2006.269.01.02 CrossRefGoogle Scholar
  28. Hill D, Prejean S (2005) Volcanic unrest beneath Mammoth Mountain, California. J Volcanol Geotherm Res 146:257–283. doi: 10.1016/j.jvolgeores.2005.03.002 CrossRefGoogle Scholar
  29. Hill D, Bailey R, Ryall A (1985) Active tectonic and magmatic processes beneath Long Valley Caldera, eastern California: a summary. J Geophys Res 90:11111–11120. doi: 10.1029/JB090iB13p11111 CrossRefGoogle Scholar
  30. Hill D, Ellsworth W, Johnston M, Langbein J, Oppenheimer D, Pitt A, Reasenberg P, Sorey M, McNutt S (1990) The 1989 earthquake swarm beneath Mammoth Mountain, California: an initial look at the 4 May through 30 September activity. Bull Seismol Soc Am 80:325–339Google Scholar
  31. Hill D, Johnston M, Langbein J, McNutt S, Miller C, Mortensen C, Pitt A, Rojstaczer S (1991) Response plans for volcanic hazards in the Long Valley caldera and Mono Craters area, California. USGS open file report 91–270, p 64 Google Scholar
  32. Hill D, Bailey R, Miller C, Hendley J, Stauffer P (1997) Future eruptions in California’s Long Valley Area—what’s likely? US Geol Surv Fact Sheet 073–97Google Scholar
  33. Hsu K (1975) Catastrophic debris stream (Sturzstroms) generated by rockfalls. Geol Soc Am Bull 86:129–140. doi: 10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2 CrossRefGoogle Scholar
  34. Izelt G, Wilcox R, Powers H, Desborough G (1970) The Bishop Ash bed, a Pleistocene marker bed in the western United States. Quat Res 1:121–132. doi: 10.1016/0033-5894(70)90014-1 CrossRefGoogle Scholar
  35. Kääb A, Reynolds J, Haeberli W (2005) Glacier and permafrost hazards in high mountains. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions (a state of knowledge overview). Springer, Dordrecht, pp 225–234CrossRefGoogle Scholar
  36. Kaye G (2007) RiskScape volcano: a multi-volcanic hazard risk assessment module for the regional RiskScape program. GNS science report 2007/38, 180 ppGoogle Scholar
  37. Kaye G, Johnston D, Finnis K, Paton D (2008) Volcanic hazard awareness in the tourism sector in Mammoth Lakes, California, USA. GNS science report 2008/35, 10 ppGoogle Scholar
  38. King A, Bell R (2005) RiskScape New Zealand: a multihazard loss modeling tool. In: Proceedings of earthquake engineering in the 21st century (EE-21C) conference: technologies and trends for disaster monitoring and reductionGoogle Scholar
  39. King S, Kiremidjian A, Pachakis D, Sarabandi P (2004) Application of empirical fragility functions from recent earthquakes. In: 13th world conference on earthquake engineering, Vancouver, BC, Canada, 1–6 August 2004, Paper No. 2829Google Scholar
  40. Kircher G, Nassar A, Kustu O, Holmes W (1997) Development of building damage functions for earthquake loss estimation. Earthq Spectra 13:663–682. doi: 10.1193/1.1585974 CrossRefGoogle Scholar
  41. Loughlin S, Baxter P, Aspinall W, Darroux B, Harford C, Miller A (2002) Eyewitness accounts of the 25 June 1997 pyroclastic flows and surges at Soufrière Hills Volcano, Montserrat, and implications for disaster mitigation. Geol Soc Lond Mem 21:211–230. doi: 10.1144/GSL.MEM.2002.021.01.10 CrossRefGoogle Scholar
  42. Mader G, Blair M (1987) Living with a volcanic threat: response to volcanic hazards, Long Valley, California. William Sprangle, Portola Valley, California, p 105Google Scholar
  43. Mahood G, Ring J, McWilliams M (2000) Contemporaneous mafic and silicic eruptions during the past 160 ka at Long Valley Caldera, CA: implications of new 40Ar/ 39Ar eruption ages for current volcanic hazards. Eos Trans AGU 81(48), Meet. SupplGoogle Scholar
  44. Malin M, Sheridan M (1982) Computer-assisted mapping of pyroclastic surges. Science 217(4560):637–640. doi: 10.1126/science.217.4560.637 CrossRefGoogle Scholar
  45. Mammoth Mountain Guest Projections (MMGP) (2006) Mammoth Mountain Ski CorporationGoogle Scholar
  46. Miller C (1985) Holocene eruptions at the Inyo volcanic chain, California: implications for possible eruptions in Long Valley Caldera. Geology 13:14–17. doi: 10.1130/0091-7613(1985)13<14:HEATIV>2.0.CO;2 CrossRefGoogle Scholar
  47. Miller C, Crandell D, Mullineaux D, Hoblitt R, Bailey R (1982) Potential volcanic hazards in the Long Valley Mono Lake area, east central California and southwestern Nevada—a preliminary assessment. Geol Surv Circ 877Google Scholar
  48. Nakada S (2000) Hazards from pyroclastic flows and surges. In Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, London, pp 945–995Google Scholar
  49. Nunziante L, Fraldi M, Lirer L, Petrosino P, Scotellaro S, Cicirelli C (2003) Risk assessment of the impact of pyroclastic currents on the towns located around Vesuvio: a non-linear structural inverse analysis. Bull Volcanol 65(8):547–561. doi: 10.1007/s00445-003-0282-1 CrossRefGoogle Scholar
  50. Pierson T, Waitt R (1996) Dome-collapse rockslide and multiple sediment-water flows generated by a small explosive eruption on February 1983. In: Pierson T (ed) Hydrologic consequences of hot rock/snowpack interactions at Mt. St. Helens Volcano, Washington 1982–1984. USGS OFR 96/179Google Scholar
  51. Pittari A, Cas R (2004) Sole marks at the base of the late Pleistocene Abrigo Ignimbrite, Tenerife: implications for transport and depositional processes at the base of pyroclastic flows. Bull Volcanol 66:356–363. doi: 10.1007/s00445-003-0317-7 CrossRefGoogle Scholar
  52. Pittari A, Cas R, Monaghan J (2007) Instantaneous dynamic pressure effects on the behaviour of lithic boulders in pyroclastic flows: the Abrigo Ignimbrite, Tenereife, Canary Island. Bull Volcanol 69:265–279. doi: 10.1007/s00445-006-0072-7 CrossRefGoogle Scholar
  53. Saucedo R, Macias J, Sheridan M, Bursik M, Komorowski J (2005) Modeling of pyroclastic flows of Colima volcano, Mexico: implications for hazard assessments. J Volcanol Geotherm Res 139:103–115. doi: 10.1016/j.jvolgeores.2004.06.019 CrossRefGoogle Scholar
  54. Sheridan M, Macias J (1995) Estimation of risk probability for gravity-driven pyroclastic flows at Volcan Colima, Mexico. J Volcanol Geotherm Res 66:251–256CrossRefGoogle Scholar
  55. Shirk J (2006) Mammoth ski patrol tragedy. Mammoth Local NewspaperGoogle Scholar
  56. Sieh K, Bursik M (1986) Most recent eruption of the Mono Craters, eastern central California. J Geophys Res 91:12539–12571. doi: 10.1029/JB091iB12p12539 CrossRefGoogle Scholar
  57. Spence R, Zuccaro G, Petrazzuoli (2004a) The resistance of buildings to pyroclastic flows: theoretical and experimental studies in relation to Vesuvius. Nat Hazards Rev 5(1):48–59. doi: 10.1061/(ASCE)1527-6988(2004)5:1(48) CrossRefGoogle Scholar
  58. Spence R, Brichieri-Colombi N, Holdsworth F, Baxter P, Zuccaro G (2004b) Vesuvius: building vulnerability and human casualty estimation for a pyroclastic flow. J Volcanol Geotherm Res 133(1–4):321–343. doi: 10.1016/S0377-0273(03)00405-0 CrossRefGoogle Scholar
  59. Takada A (1994) The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism. J Geophys Res 99:13563–13574. doi: 10.1029/94JB00494 CrossRefGoogle Scholar
  60. Toyos G, Cole P, Felpeto A, Marti J (2007) A GIS-based methodology for hazard mapping of small volume pyroclastic density currents. Nat Hazards 41(1):99–112. doi: 10.1007/s11069-006-9026-9 CrossRefGoogle Scholar
  61. USGS Long Valley Observatory Website (2008) Eruptions from the Inyo chain about 600 Years ago: sequence of events and effects in the Long Valley Area. Accessed 4 February 2008
  62. Valentine G (1998) Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects. J Volcanol Geotherm Res 87:117–140. doi: 10.1016/S0377-0273(98)00094-8 CrossRefGoogle Scholar
  63. Voight B, Constantine E, Siswowidjoyo S, Torley R (2000a) Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768–1998. J Volcanol Geotherm Res 100:69–138. doi: 10.1016/S0377-0273(00)00134-7 CrossRefGoogle Scholar
  64. Voight B, Young KD, Hidayat D, Subandrio, Purbawinata MA, Ratdomopurbo A, Suharna, Panut, Sayudi DS, LaHusen R, Marso J, Murray T, Dejean M, Iguchi M, and Ishihara K (2000b) Deformation and seismic precursors to dome-collapse and fountain-collapse nuées ardentes at Merapi Volcano, Java, Indonesia, 1994–1998. J Volcanol Geotherm Res 100:261–287. doi: 10.1016/S0377-0273(00)00140-2 CrossRefGoogle Scholar
  65. Wilson T, Kaye G (2007) Agricultural tephra fragility functions for the RiskScape Project. GNS science report 2007/37, p 55 Google Scholar
  66. Wilson T, Kaye G, Stewart C, Cole J (2007) The impacts of the 2006 eruption of Merapi volcano on agriculture and infrastructure. GNS science report 2007/7, p 69 Google Scholar
  67. Wood S (1977) Distribution, correlation, and radiocarbon dating of late Holocene tephra, Mono and Inyo craters, eastern California. Geol Soc Am Bull 88:89–95. doi: 10.1130/0016-7606(1977)88<89:DCARDO>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Grant Kaye
    • 1
    • 2
  • Jim Cole
    • 1
  • Andrew King
    • 2
  • David Johnston
    • 2
  1. 1.Natural Hazard Research CentreUniversity of CanterburyChristchurchNew Zealand
  2. 2.GNS ScienceAvalon, WellingtonNew Zealand

Personalised recommendations