Natural Hazards

, Volume 50, Issue 3, pp 539–550 | Cite as

Lava flow simulations using discharge rates from thermal infrared satellite imagery during the 2006 Etna eruption

  • Annamaria Vicari
  • Alessia Ciraudo
  • Ciro Del Negro
  • Alexis Herault
  • Luigi Fortuna
Original Paper


Techniques capable of measuring lava discharge rates during an eruption are important for hazard prediction, warning, and mitigation. To this end, we developed an automated system that uses thermal infrared satellite MODIS data to estimate time-averaged discharge rate. MODIS-derived time-varying discharge rates were used to drive lava flow simulations calculated using the MAGFLOW cellular automata model, allowing us to simulate the discharge rate-dependent spread of lava as a function of time. During the July 2006 eruption of Mount Etna (Sicily, Italy), discharge rates were estimated at regular intervals (i.e., up to 2 times/day) using the MODIS data. The eruption lasted 10 days and produced a ~3-km-long lava flow field. Time-averaged discharge rates extracted from 13 MODIS images were utilized to produce a detailed chronology of lava flow emplacement, demonstrating how infrared satellite data can be used to drive numerical simulations of lava flow paths during an ongoing eruptive event. The good agreement between simulated and mapped flow areas indicates that model-based inundation predictions, driven by time-varying discharge rate data, provide an excellent means for assessing the hazard posed by ongoing effusive eruptions.


MAGFLOW model Lava flow simulation Etna volcano 



We are grateful to NASA for the infrared satellite imagery acquired by MODIS sensors onboard Terra and Aqua satellites. We are indebted to all personal of UFVG of INGV-CT who ensure the regular mapping of the lava flow field. Thanks are due to Maria Marsella (University of Rome “La Sapienza”) for making the Digital Elevation Model of Etna available. We are grateful to Andrew Harris and two anonymous reviewers for constructive and helpful comments that greatly improved the manuscript. This study was performed with financial support from the ETNA project (DPC-INGV 2004–2006 contract) to the TecnoLab organized by DIEES-UNICT and INGV-CT.


  1. Ackerman S, Strabala K, Menzel P, Frey R, Moeller C, Gumley L (2002) Discriminating clear-sky from cloud with MODIS. Algorithm theoritical basis document (MOD35). NASA Goddard Space Flight CenterGoogle Scholar
  2. Bailey JE, Harris AJL, Dehn J, Calvari S, Rowland SK (2006) The changing morphology of an open lava channel on Mt Etna. Bull Volcanol 68:497–515CrossRefGoogle Scholar
  3. Behncke B, Neri M (2003) The July–August 2001 eruption of Mt. Etna (Sicily). Bull Volcanol 65:461–476CrossRefGoogle Scholar
  4. Bencke B, Giammanco S (2006) Rapporto eruzione Etna. INGV Report 19 Luglio 2006Google Scholar
  5. Branca S, Consoli S (2006) Rapporto Eruzione Etna. INGV Report 15 Luglio 2006Google Scholar
  6. Branca S, Burton M, Calvari S, Lodato L, Norini G, Spampinato L (2006a) Rapporto eruzione Etna. INGV Report 17 Luglio 2006Google Scholar
  7. Branca S, Calvari S, Coltelli M, Del Carlo P, Lodato L (2006b) Rapporto eruzione Etna. INGV Report 16 Luglio 2006Google Scholar
  8. Burton M, Calvari S, Lodato L (2006a) Rapporto eruzione Etna. INGV Report 17 Luglio 2006Google Scholar
  9. Burton M, Di Vito M, Giordano D, Marotta E, Orsi G (2006b) Aggiornamento eruzione Etna. INGV Report 23 Luglio 2006Google Scholar
  10. Burton M, Miraglia L, Spampinato L, Norini G (2006c) Rapporto eruzione Etna. INGV Report 19 Luglio 2006Google Scholar
  11. Calvari S, Coltelli M, Neri M, Pompilio M, Scribano V (1994) The 1991–93 Etna eruption: chronology and geological observations. Acta Vulcanol 4:1–15Google Scholar
  12. Calvari S, Neri M, Pinkerton H (2003) Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J Volcanol Geotherm Res 119:107–123CrossRefGoogle Scholar
  13. Calvari S, Spampinato L, Lodato L, Harris AJL, Patrick MR, Dehn J, Burton MR, Andronico D (2005) Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli Volcano (Italy) reconstructed from direct observations and surveys with a hand-held thermal camera. J Geophys Res 110:B02201. doi: 10.1029/2004JB003129 CrossRefGoogle Scholar
  14. Calvari S, Di Vito M, Orsi G (2006) Rapporto eruzione Etna. INGV Report 24 luglio 2006Google Scholar
  15. Corsaro R, Neri M (2006) Rapporto eruzione Etna. INGV Report 15 Luglio 2006Google Scholar
  16. Costa A, Macedonio G (2005) Numerical simulation of lava flows based on depth-averaged equations. Geophys Res Lett 32:L05304. doi: 10.1029/2004GL021817 CrossRefGoogle Scholar
  17. Crisci GM, Di Gregorio S, Pindaro O, Ranieri G (1986) Lava flow simulation by a discrete cellular model: first implementation. Int J Model Simul 6:137–140Google Scholar
  18. Crisci GM, Iovine G, Di Gregorio S, Lupiano V (2008) Lava-flow hazard on the SE flank of Mt Etna (southern Italy). J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2008.01.041
  19. Crisp J, Baloga S (1990) A model for lava flows with two thermal components. J Geophys Res 95:1255–1270CrossRefGoogle Scholar
  20. Dehn J, Dean KG, Engle K (2000) Thermal monitoring of North Pacific volcanoes from space. Geology 28:755–758CrossRefGoogle Scholar
  21. Del Negro C, Fortuna L, Herault A, Vicari A (2007) Simulations of the 2004 lava flow at Etna volcano by the MAGFLOW cellular automata model. Bull Volcanol. doi: 10.1007/s00445-007-0168-8
  22. Dozier J (1981) A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens Environ 11:221–229CrossRefGoogle Scholar
  23. Favalli M, Pareschi MT, Neri A, Isola I (2005) Forecasting lava flow paths by a stochastic approach. Geophys Res Lett 32:L03305. doi: 10.1029/2004GL021718 CrossRefGoogle Scholar
  24. Flynn LP, Harris AJL, Rothery DA, Oppenheimer C (2000) High-spatial resolution remote sensing of active volcanic features using Landsat and hyperspectral data. Remote Sensing of Active Volcanism, AGU Monograph 116, pp 161–177Google Scholar
  25. Frazzetta G, Romano R (1984) The 1983 Etna eruption: event chronology and morphological evolution of the lava flow. Bull Volcanol 47:1079–1096CrossRefGoogle Scholar
  26. Giordano D, Dingwell D (2003) Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions. Bull Volcanol 65:8–14Google Scholar
  27. Harris AJL (1996) Low spatial resolution thermal monitoring of volcanoes from space. PhD Thesis, Department of Earth Sciences, The Open University, p 315Google Scholar
  28. Harris AJL, Rowland SK (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63:20–44CrossRefGoogle Scholar
  29. Harris AJL, Swabey SEJ, Higgins J (1995) Automated thresholding of active lavas using AVHRR data. Int J Remote Sens 16(18):3681–3686CrossRefGoogle Scholar
  30. Harris AJL, Blake S, Rothery D, Stevens N (1997a) A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: implications for real-time thermal volcano monitoring. J Geophys Res 102:7985–8003CrossRefGoogle Scholar
  31. Harris AJL, Butterworth AL, Carlton RW, Downey I, Miller P, Navarro P, Rothery DA (1997b) Low-cost volcano surveillance from space: case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus. Bull Volcanol 59:49–64CrossRefGoogle Scholar
  32. Harris AJL, Flynn L, Keszthelyi L, Mouginis-Mark P, Rowland S, Resing J (1998) Calculation of lava effusion rates from Landsat TM data. Bull Volcanol 60:52–71CrossRefGoogle Scholar
  33. Harris AJL, Murray JB, Aries SE, Davies MA, Flynn LP, Wooster MJ, Wright R, Rothery DA (2000) Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J Volcanol Geotherm Res 102:237–270CrossRefGoogle Scholar
  34. Harris AJL, Dehn J, Patrick MR, Calvari S, Ripepe M, Lodato L (2006) Lava effusion rates from hand-held thermal infrared imagery: an example from the June 2003 effusive activity at Stromboli. Bull Volcanol 68(2):107–117CrossRefGoogle Scholar
  35. Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol. doi: 10.1007/s00445-007-0120-y
  36. Herault A, Vicari A, Ciraudo A, Del Negro C (2008) Forecasting lava flow hazard during the 2006 Etna eruption: using the MAGFLOW cellular automata model. Comput Geosci. doi: 10.1016/j.cageo.2007.10.008
  37. Higgins J, Harris AJL (1997) VAST: a program to locate and analyse volcanic thermal anomalies automatically from remotely sensed data. Comput Geosci 23(6):627–645CrossRefGoogle Scholar
  38. Ishihara K, Iguchi M, Kamo K (1990) Numerical simulation of lava flows on some volcanoes in Japan. In: Fink JK (ed) Lava flows and domes: emplacement mechanisms and hazard implications. Springer, Berlin, pp 174–207Google Scholar
  39. Mei CC, Yuhi M (2001) Slow flow of a Bingham fluid in a shallow channel of finite width. J Fluid Mech 431:135–160CrossRefGoogle Scholar
  40. Miyamoto H, Sasaki S (1997) Simulating lava flows by an improved cellular automata method. Comput Geosci 23(3):283–292CrossRefGoogle Scholar
  41. Pieri DC, Baloga SM (1986) Eruption rate, area, and length relationships for some Hawaiian lava flows. J Volcanol Geotherm Res 30:29–45CrossRefGoogle Scholar
  42. Pieri DC, Glaze LS, Abrams MJ (1990) Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna. Geology 18:1018–1022CrossRefGoogle Scholar
  43. Pinkerton H (1993) Measuring the properties of flowing lavas. In: Kilburn CRJ, Luongo G (eds) Active lavas. UCL Press, London, pp 175–191Google Scholar
  44. Pinkerton H, Sparks RSJ (1976) The 1975 subterminal lavas, Mount Etna: a case history of the formation of a compound lava field. J Volcanol Geotherm Res 1:167–182CrossRefGoogle Scholar
  45. Pinkerton H, Sparks RSJ (1978) Field measurements of the rheology of lava. Nature 276:383–385CrossRefGoogle Scholar
  46. Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56:108–120Google Scholar
  47. Rothery DA, Francis PW, Wood CA (1988) Volcano monitoring using short wavelength infrared data from satellites. J Geophys Res 93:7992–8008CrossRefGoogle Scholar
  48. Vicari A, Herault A, Del Negro C, Coltelli M, Marsella M, Proietti C (2007) Simulations of the 2001 lava flow at Etna volcano by the MAGFLOW cellular automata model. Environ Model Softw 22:1465–1471CrossRefGoogle Scholar
  49. Wadge G (1978) Effusion rate and the shape of aa lava flows fields on Mount Etna. Geology 6:503–506CrossRefGoogle Scholar
  50. Walker GPL (1973) Lengths of lava flows. Phil Trans R Soc Lond 274:107–118CrossRefGoogle Scholar
  51. Wright R, Blake S, Harris A, Rothery D (2001) A simple explanation for the space-based calculation of lava eruption rates. Earth Planet Sci Lett 192:223–233CrossRefGoogle Scholar
  52. Wright R, Flynn L, Garbeil H, Harris A, Pilger E (2004) MODVOLC: near-real-time thermal monitoring of global volcanism. J Volcanol Geotherm Res 135:29–49CrossRefGoogle Scholar
  53. Young P, Wadge G (1990) FLOWFRONT: simulation of a lava flow. Comput Geosci 16(8):1171–1191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Annamaria Vicari
    • 1
  • Alessia Ciraudo
    • 1
    • 2
  • Ciro Del Negro
    • 1
  • Alexis Herault
    • 1
    • 3
  • Luigi Fortuna
    • 4
  1. 1.Istituto Nazionale di Geofisica e VulcanologiaSezione di CataniaCataniaItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità di CataniaCataniaItaly
  3. 3.Université Paris-Est, S3ISChamps-sur-MarneFrance
  4. 4.Dipartimento di Ingegneria Elettrica Elettronica e dei SistemiUniversità di Catania CataniaItaly

Personalised recommendations