Natural Hazards

, 51:363 | Cite as

El Chichón volcano, April 4, 1982: volcanic cloud history and fine ash fallout

Original Paper


This retrospective study focuses on the fine silicate particles (<62 µm in diameter) produced in a large eruption that was otherwise well studied. Fine particles represent a potential hazard to aircraft, because as simple particles they have very low terminal velocities and could potentially stay aloft for weeks. New data were collected to describe the fine particle size distributions of distal fallout samples collected soon after eruption. Although, about half of the mass of silicate particles produced in this eruption of ~1 km3 dense rock equivalent magma were finer than 62 µm in diameter, and although these particles were in a stratospheric cloud after eruption, almost all of these fine particles fell to the ground near (<300 km) the volcano in a day or two. Particles falling out from 70 to 300 km from the volcano are mostly <62 µm in diameter. The most plausible explanation for rapid fallout is that the fine ash nucleates ice in the convective cloud and initiates a process of meteorological precipitation that efficiently removes fine silicates. These observations are similar to other eruptions and we conclude that ice formation in convective volcanic clouds is part of an effective fine ash removal process that affects all or most volcanic clouds. The existence of pyroclastic flows and surges in the El Chichón eruption increased the overall proportion of fine silicates, probably by milling larger glassy pyroclasts.


El Chichón Volcanic cloud Volcanic ash Fallout Aircraft hazards 



Samples were provided by Joop Varekamp, Jim Luhr, and Sam Bonis. GSD data were provided by Komar Kawatra, and SEM study through Owen Mills. Stephen Self helped to improve the manuscript.


  1. Blott SJ, Pye K (2001) Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Proc Land 26:1237–1248Google Scholar
  2. Bluth GJS, Doiron SD, Krueger AJ, Walter LS, Schnetzler CC (1992) Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. Geophys Res Lett 19:151–154Google Scholar
  3. Bluth GJS, Rose WI, Sprod IE, Krueger AJ (1997) Stratospheric loading from explosive volcanic eruptions. J Geol 105:671–683CrossRefGoogle Scholar
  4. Bonadonna C, Houghton B (2005) Total grain size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456. doi: 10.1007/s00445-004-0386-2 CrossRefGoogle Scholar
  5. Carey SN, Sigurdsson H (1986) The 1982 eruptions of El Chichón volcano, Mexico (2): observations and numerical modelling of tephra-fall distribution. Bull Volcanol 48:127–142. doi: 10.1007/BF01046547 CrossRefGoogle Scholar
  6. Chuan RL, Woods DC (1984) Temporal variations in characteristics of the El Chichon stratospheric cloud. Geofis Int 23(3):335–349Google Scholar
  7. Dartevelle S, Ernst GGJ, Stix J, Bernard A (2002) Origin of the Mount Pinatubo climactic eruption cloud: implications for volcanic hazards and atmospheric impacts. Geology 30(7):663–666. doi :10.1130/0091-7613(2002)030<0663:OOTMPC>2.0.CO;2CrossRefGoogle Scholar
  8. Durant AJ, Shaw RA, Rose WI (2007a) Ice nucleation and overseeding of ice in volcanic clouds. J Geophys Res 113:D09206. doi: 10.1029/2007JD009064
  9. Durant AJ, Rose WI, Sarna-Wojcicki A, Carey S, Volentik ACM (2007b) Hydrometeor-enhanced Tephra sedimentation from the 18 May 1980 eruption of Mount St. Helens (USA). J Geophys Res (in review)Google Scholar
  10. Guo S, Rose WI, Bluth GJS, Watson IM (2004a) Particles in the great Pinatubo volcanic cloud of June 1991: the role of ice. Geochem Geophys Geosyst 5(5):Q05003. doi: 10.1029/2003GC000655 CrossRefGoogle Scholar
  11. Guo S, Bluth GJS, Rose WI, Watson IM, Prata AJ (2004b) Re-evaluation of SO2 release of the climactic June 15, 1991 Pinatubo eruption using TOMS and TOVS satellite data. Geochem Geophys Geosyst 5(4):Q04001. doi: 10.1029/2003GC000654 CrossRefGoogle Scholar
  12. Gutiérrez-Coutiño R, Moreno-Corzo M, Cruz-Borraz C (1983) Determinación del volumen del material arrajado y grado de explosividad alcanzado por el Volcán Chichonal. Estado de Chiapas in El Volcán Chichonal UNAM, MexicoGoogle Scholar
  13. Heiken G, Wohletz K (1985) Volcanic ash. University of California Press, Berkeley, 246 ppGoogle Scholar
  14. Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69:1–24. doi: 10.1007/s00445-006-0052-y CrossRefGoogle Scholar
  15. Krueger AJ, Krotkov N, Carn S (2007) El Chichón: the genesis of volcanic sulfur dioxide monitoring from space. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2008.02.026
  16. Luhr J, Varekamp JC, Prestegaard K (1984) The 1982 eruptions of El Chichon volcano (Chiapas, Mexico); character of the eruptions, ash-fall deposits, and gasphase. J Volcanol Geotherm Res 23:39–68 Google Scholar
  17. Mackinnon IDR, Gooding JL, McKay DS, Clanton US (1984) The El Chichón stratospheric cloud: solid particluates and settling rates. J Volcanol Geotherm Res 23:125–146. doi: 10.1016/0377-0273(84)90059-3 CrossRefGoogle Scholar
  18. Matson M (1984) The 1982 El Chichón volcano eruptions: a satellite perspective. J Volcanol Geotherm Res 23:1–10. doi: 10.1016/0377-0273(84)90054-4 CrossRefGoogle Scholar
  19. Murrow PJ, Rose WI, Self S (1980) Determination of the total grain size distribution in a vulcanian eruption column and its implications to stratospheric aerosol perturbation. Geophys Res Lett 7:893–896. doi: 10.1029/GL007i011p00893 CrossRefGoogle Scholar
  20. Robock A, Matson M (1983) Circumglobal transport of the El Chichón volcanic dust cloud. Science 221:195–197. doi: 10.1126/science.221.4606.195 CrossRefGoogle Scholar
  21. Rose WI (1986) Interaction of aircraft and explosive eruption clouds: a volcanologist’s perspective. AIAA J 25:52–58. doi: 10.2514/3.9579 CrossRefGoogle Scholar
  22. Rose WI, Delene DJ, Schneider DJ, Bluth GJS, Krueger AJ, Sprod I et al (1995) Ice in the 1994 Rabaul eruption cloud: implications for volcano hazard and atmospheric effects. Nature 375:477–479. doi: 10.1038/375477a0 CrossRefGoogle Scholar
  23. Rose WI, Bluth GJS, Ernst GGJ (2000) Integrating retrievals of volcanic cloud characteristics from satellite remote sensors—a summary. Philos Trans R Soc Lond A 358(1770):1585–1606CrossRefGoogle Scholar
  24. Rose WI, Bluth GJS, Watson IM (2004) Ice in volcanic clouds: when and where? Proceedings of the 2nd international conference on volcanic ash and aviation safety, OFCM, Washington, DC, Session 3, pp 27–33Google Scholar
  25. Rose WI, Self S, Murrow PJ, Ernst GGJ, Bonadonna C, Durant AJ (2007) Pyroclastic fall deposit from the October 14, 1974 eruption of Fuego volcano, Guatemala. Bull Volcanol 70:1043–1067. doi: 10.1007/s00445-007-0187-5 Google Scholar
  26. Schneider DJ, Rose WI, Coke LR, Bluth GJS, Sprod I, Krueger AJ (1999) Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR. J Geophys Res 104:4037–4050. doi: 10.1029/1998JD200073 CrossRefGoogle Scholar
  27. Sigurdsson H, Carey SN (1984) The 1982 eruptions of El Chichón volcano, Mexico: stratigraphy of pyroclastic deposits. J Volcanol Geotherm Res 23:11–37. doi: 10.1016/0377-0273(84)90055-6 CrossRefGoogle Scholar
  28. Sigurdsson H, Carey SN, Fisher RV (1987) The 1982 eruption of El Chichon volcano, Mexico; 3, physical properties of pyroclastic surges. Bull Volcanol 49:467–488Google Scholar
  29. Varekamp JC, Luhr JF, Prestegaard KL (1984) The 1982 eruptions of El Chichon volcano (Chiapas, Mexico): character of the eruptions, ash-fall deposits, and gasphase. J Volcanol Geotherm Res 23:39–68. doi: 10.1016/0377-0273(84)90056-8 CrossRefGoogle Scholar
  30. Wen S, Rose WI (1994) Retrieval of particle sizes and masses in volcanic clouds using AVHRR bands 4 and 5. J Geophys Res 99:5421–5431. doi: 10.1029/93JD03340 CrossRefGoogle Scholar
  31. Woods DC, Chuan RL, Rose WI (1985) Halite particles injected into the stratosphere by the 1982 El Chichón eruption. Science 230:170–172. doi: 10.1126/science.230.4722.170 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Michigan Technological UniversityHoughtonUSA
  2. 2.School of Geographical Sciences/Earth Sciences DeparmentUniversity of BristolBristolUK

Personalised recommendations