Natural Hazards

, Volume 51, Issue 3, pp 459–475 | Cite as

Snow avalanche hazards in the Făgăraş massif (Southern Carpathians): Romanian Carpathians—Management and perspectives

  • Mircea Voiculescu
Original Paper


Snow avalanches represent an undeniable reality in the Southern Carpathians both as a geomorphic process and as a type of hazard. Before the 1990s, few researchers focused on avalanches in Romania. However, after 1990, avalanches became an increasingly important topic of Romanian research including research on their management implications. This study focuses on the Făgăraş massif, a representative mountain unit in the Southern Carpathians that is dominant due to its glacial and periglacial relief, high altitudes and high occurrence of avalanche hazards. Three main research issues are considered. First, types of avalanches are delineated along with affected areas of the Bâlea glacial valley (on the northern slope) and the Capra glacial valley (on the southern slope) using data from a research centre for snow and avalanche monitoring that was created in the Bâlea glacial cirque in 2003. Second, the impact of avalanches on human activities is considered including transportation use of the Transfăgărăşan Highway that traverses the highest elevations in Romania and winter recreation activities such as skiing, snowboarding, climbing and hiking. The impacts on forests are also considered. Third, the needs and gaps of avalanche management are considered, specifically in the Făgăraş massif and also more generally in the mountains of Romania.


Snow avalanche Avalanche hazard Hazard management Făgăraş massif Romanian Carpathians 



The author would like to express his appreciation to Maria Moţoiu, meteorologist, in charge of the nivometeorology research group of the Dynamic Meteorology Climatology and Agrometeorology Department, to the Group of Forecast Analysis and Statistic Adaptation, National Administration of Meteorology, to Narcisa Milian, forecast meteorologist at Regional Weather Forecast Centre, Sibiu for having made available documentation of the nivological balances for the winters of 2003–2004, 2004–2005 and 2005–2006, to Adi David, director of Mountain Rescuers Sibiu (on the northern slope), to Mountain Rescuers Victoria (on the northern slope) and to Mountain Rescuers Argeş (on the southern slope), for statistical data, regarding the fatalities in the Făgăraş massif.


  1. Administraţia Naţională de Meteorologie (2003–2004) Bilanţul nivologic, sezonul de iarnă, Laboratorul de prelucrare a datelor meteorologice, Colectivul de Nivometeorologie, Ministerul Mediului şi Gospodăririi Apelor Bucureşti, 76 ppGoogle Scholar
  2. Administraţia Naţională de Meteorologie (2004–2005) Bilanţul nivologic, sezonul nivologic, Secţia de Meteorologie Dinamică, Climatologie şi Agrometeorlogie, Grupul de Verificare a Prognozelor şi Adaptare Statistică (GVPAS), Ministerul Mediului şi Gospodăririi Apelor, Bucureşti, 147 ppGoogle Scholar
  3. Administraţia Naţională de Meteorologie (2005–2006) Bilanţul nivologic, sezonul nivologic, Secţia de Meteorologie Dinamică, Climatologie şi Agrometeorlogie, Grupul de Verificare a Prognozelor şi Adaptare Statistică, Colectivul de Nivometeorlogie, Ministerul Mediului şi Gospodăririi Apelor, Bucureşti, 132 ppGoogle Scholar
  4. Agrawala S (dir) (2007) Changements climatiques dans les Alps Européennes. Adapter le tourisme d’hiver et la gestion des risques naturels, OCDE, 140 ppGoogle Scholar
  5. Ammann W (2003) Integral risk management in avalanche prevention and mitigation: the Swiss approach. In: Hervás J (ed) Recommendations to deal with snow avalanche in Europe. Nedies Project, European Commission, Joint Research Centre, pp 27–38Google Scholar
  6. Ancey C (1998) Guide, neige et avalanche. Connaissances, Practiques & Sécurité, 3èmeédition. École Polytechnique Fédérale de Lausanne, 281 ppGoogle Scholar
  7. Ancey C (2001) Snow avalanches. In: Balmforth N, Provenzalle A (eds) Geomorphological fluid mechanics: selected topics in geological and geomorphological fluid mechanics. Springer, Berlin, pp 319–338Google Scholar
  8. Ancey C (dir) (2005) Gestion et prévision du risque d’avalanches. In: Dynamiques des avalanches. Cemagref, Presses Polytehniques et Universitaires Romandes, pp 133–160Google Scholar
  9. Ancey C, Charlier C (1996) Quelques réflexions autour d’ une classification des avalanches. Rev Geogr Alp 84(1):9–21Google Scholar
  10. Armstrong BR, Williams K, Armstrong RL (1994) The avalanche book, rev & updated edition. Fulcrum Publishing, 240 ppGoogle Scholar
  11. Beniston M, Keller F, Goyette S (2003) Snow pack in the Swiss Alps under changing climatic conditions: an empirical approach for climate impacts studies. Theor Appl Climatol 74:19–31CrossRefGoogle Scholar
  12. Besançenot JP (1990) Climat et tourism. MASSON, Collection Géographie, Paris, 223 ppGoogle Scholar
  13. Bezzi M, Cantiani MGM, Ciolli M, Comunello G, Cherubini P (2002) Leggere gli anelli degli alberi per riconstruire la frequenza e l’estensione delle valanghe nel passato, S.I.S.E.F. Atti 3:147–152Google Scholar
  14. Breiling M, Charamza P (1999) The impact of global warming on winter tourism and skiing: a regionalised model for Austrian snow conditions. Reg Environ Chang 1(1):4–14. doi: 10.1007/s101130050003 CrossRefGoogle Scholar
  15. Capello CF (1973) Il problema delle valanghe. Boll Soc Geogr Ital, Monto nevoso e morfologia, Suppl., II(10):265–296Google Scholar
  16. Ciolli M, Tabarelli S, Zatelli P (1998) 3D spatial data integration for avalanche risk management, IAPRS. GIS-Between Vis Appl Stuttg 32(Part 4):121–127Google Scholar
  17. Civil Protection Command (2004) National report regarding disaster prevention in Romania. Ministry of Administration and Interior, Bucharest, 38 ppGoogle Scholar
  18. Dorren L, Berger F, Imeson A, Maier B, Rey F (2004) Integrity, stability and management of protection forests in the European Alps. For Ecol Manag 195(1–2):165–176CrossRefGoogle Scholar
  19. Embleton C (1979) Nival processes. In: Process in geomorphology. Edward Arnold, London, pp 307–324Google Scholar
  20. Embleton C, King CAM (1974) Periglacial geomorphology. Arnold, London, 215 ppGoogle Scholar
  21. Fleischhauer M, Greiving S, Schlusemann B, Schmidt-Thomé P, Kallio H, Tarvainen T et al (2005) Multi-risk assessment of spatially relevant hazards in Europe, ESPON, ESMG symposium, Nürnberg, 14 ppGoogle Scholar
  22. Fuchs S, Bründl M (2005) Damage potential and losses resulting from snow avalanche in settlements of the canton of Grisons, Switzerland. Nat Hazards 34:53–69. doi: 10.1007/s11069-004-0784-y CrossRefGoogle Scholar
  23. Gardner J (1970) Geomorphic significance of avalanches in the Lake Louise Area, Alberta, Canada. Arct Alp Res 2(2):135–144. doi: 10.2307/1550348 CrossRefGoogle Scholar
  24. Germain D, Filion L, Hétu B (2005) Snow avalanche activity after fire and logging disturbance, northern Gaspé Peninsula, Quebec, Canada. Can J Earth Sci 42:2103–2116. doi: 10.1139/e05-087 CrossRefGoogle Scholar
  25. Gumuchian H (1990) La neige dans les Alpes françaises du Nord, Editions des Cahiers de l’Alpe de la Société des Écrivains Dauphinois, Grenoble, 617 ppGoogle Scholar
  26. Gürer I (1998) International cooperation for solving the avalanche problem in Turkey. Nat Hazards 18:77–85. doi: 10.1023/A:1008013710228 CrossRefGoogle Scholar
  27. Höller P (2007) Avalanche hazards and mitigation in Austria: a review. Nat Hazards 43:81–101. doi: 10.1007/s11069-007-9109-2 CrossRefGoogle Scholar
  28. International Symposium on Scientific aspects of Snow and Ice Avalanches (1966) Reports and discussions, International Union of Geodesy and Geophysics, International Association of Scientific Hydrology, Publication No. 69 de l’AIHS, 5–10 April 1965, Davos, 432 ppGoogle Scholar
  29. Jaccard C (1990) Fuzzy factorial analysis of snow avalanches. Nat Hazards 3:329–340. doi: 10.1007/BF00124391 CrossRefGoogle Scholar
  30. Jamieson B, Stethem C (2002) Snow avalanche hazards and management in Canada: challenges and progress. Nat Hazards 26:35–53. doi: 10.1023/A:1015212626232 CrossRefGoogle Scholar
  31. Johnson EA (1987) The relative importance of snow avalanche disturbance and thinning on canopy plant population. Ecology 68:43–53. doi: 10.2307/1938803 CrossRefGoogle Scholar
  32. Keiler M, Sailer R, Jörg P, Weber C, Fuchs S, Zischg A et al (2006) Avalanche risk assessment—a multi-temporal approach, results from Galtür, Austria. Nat Hazards Earth Syst Sci 6:637–651CrossRefGoogle Scholar
  33. Kulakowski D, Rixen C, Bebi P (2006) Changes in forest structure and in the relative importance of climatic stress as a result of suppression of avalanche disturbances. For Ecol Manag 223(1–3):66–74CrossRefGoogle Scholar
  34. Kuroda M (1967) Classification of snow avalanches. In: Physics of snow and ice: proceedings. Institute of Low Temperature Science, Hokkaido Univ, vol 1(part 2), pp 1277–1290Google Scholar
  35. Larocque S, Hétu B, Filion L (2001) Geomorphic and dendroecological impacts of slushflow in central Gaspé Peninsula (Québec, Canada). Geogr Ann 83A:191–201. doi: 10.1111/1468-0459.00154 CrossRefGoogle Scholar
  36. Luckman BH (1977) The geomorphic activity of snow avalanches. Geogr Ann 59A(1–2):31–48CrossRefGoogle Scholar
  37. Margreth S, Stoffel L, Wilhelm C (2003) Winter opening of high alpine pass roads—analysis and case studies from the Swiss Alps. Cold Reg Sci Technol 37(3):467–482CrossRefGoogle Scholar
  38. McClung DM (2000) Extreme avalanche runout in space and time. Can Geotech J 37:161–170CrossRefGoogle Scholar
  39. McClung DM, Schaerer P (1993) The avalanche handbook, the mountaineers. Seattle, 271 ppGoogle Scholar
  40. Mock C (1996) Avalanche climatology of Alyeska, Alaska, U.S.A. Arct Alp Res 28(4):502–508. doi: 10.2307/1551861 CrossRefGoogle Scholar
  41. O’Gorman D (Project Leader) (2003) Report of the independent panel. Prepared for Parks Canada, 30 June, 90 ppGoogle Scholar
  42. Quinn MS, Phillips J (2000) Avalanche paths in TFL14: inventory, description, classification and management. Final report to Crestbrook Forest Industries Inc., Faculty of Environmental Design, University of Calgary, 137 ppGoogle Scholar
  43. Schaerer P (1989) The avalanche-hazard index. Ann Glaciol 13:241–247Google Scholar
  44. Schmidt-Thomé P (ed) (2006) The spatial effects and management of natural and technological hazards in Europe—ESPON 1.3.1. Executive summary, 309 ppGoogle Scholar
  45. Schönenberger W, Noack A, Thee P (2005) Effect of timber removal from windthrow slopes on the risk of snow avalanches and rockfall. For Ecol Manag 213(1–3):197–208CrossRefGoogle Scholar
  46. Schweizer J, Camponovo C (2001) The skier’s zone of influence in triggering slab avalanches. Ann Glaciol 32(1(7)):314–320CrossRefGoogle Scholar
  47. Schweizer J, Jamieson B (2001) Snow cover properties for skier triggering of avalanches. Cold Reg Sci Technol 33(2–3):207–221CrossRefGoogle Scholar
  48. Schweizer J, Lütschg M (2001) Characteristics of human-triggered avalanches. Cold Reg Sci Technol 33(2–3):147–162CrossRefGoogle Scholar
  49. Smith MJ (1993) Frequency and terrain factors for high-frequency snow avalanche paths. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Faculty of Graduate Studies, Department of Geography, The University of British Columbia, 58 ppGoogle Scholar
  50. Smith MJ, McClung DM (1997) Avalanche frequency and terrain characteristics at Roger’s Pass, British Columbia, Canada. J Glaciol 43(143):165–171Google Scholar
  51. Stethem C, Jamieson B, Liverman D, Germain D, Walker S (2003) Snow avalanche hazard in Canada—a review. Nat Hazards 28:487–515. doi: 10.1023/A:1022998512227 CrossRefGoogle Scholar
  52. UNESCO (1981) Avalanche atlas. Illustrated international avalanche classification. International Commission of Snow and Ice of the International Association of Hydrological Sciences, Switzerland, 265 ppGoogle Scholar
  53. van Herwijnen A, Jamieson B (2007) Snowpack properties associated with fracture initiation and propagation resulting in skier-triggered dry snow slab avalanches. Cold Reg Sci Technol 50(1–3):13–22CrossRefGoogle Scholar
  54. Vanni M (1965) Pour une classification géographique des avalanches. In: International symposium on scientific aspects of snow and ice avalanches. Report and discussions. Davos, pp 397–407Google Scholar
  55. Voiculescu M (2002a) Studiul potenţialului geoecologic al Masivului Făgăraş şi protecţia mediului înconjurător, Editura Mirton, Timişoara, 375 ppGoogle Scholar
  56. Voiculescu M (2002b) Fenomene geografice de risc in Masivul Făgăraş, Editura Mirton, Timişoara, 231 ppGoogle Scholar
  57. Voiculescu M (2004a) Întocmirea hărţii riscului la avalanşe. Studiu de caz: circul şi valea glaciară Bâlea (Masivul Făgăraş), Riscuri şi catastrofe, Nr. 1, Casa Cărţii de Ştiinţă, Cluj-Napoca, pp 243–251Google Scholar
  58. Voiculescu M (2004b) About the morphometrical characteristics of avalanche tracks on Bâlea–Capra Area (Făgăraş massif); Analele Universităţii de Vest din Timişoara. Ser Geogr XIV:31–43Google Scholar
  59. Voiculescu M (2004c) Types of avalanches and their morphogenetical impact in Făgăraş Masiff—Southern Carpathians (Romania), Geomorphologia Slovaca, Číslo 1, ročník 4, Bratislava, pp 72–81Google Scholar
  60. Voiculescu M, Flueraru C (2008) Mapping avalanche hazard. Case study: Capra Valley, Făgăraş Mountains, Romanian. J Meteorol (in press)Google Scholar
  61. Weir P (2002) Snow avalanche management in forested terrain, British Columbia. Ministry of Forests, Forest Science Program, 190 ppGoogle Scholar
  62. Weiss G (2000) Evaluation of policy instruments for protective forest management in Austria. For Policy Econ 1(3–4):243–255Google Scholar
  63. Zeidler A (2004) Forecasting shier-triggered avalanches in the Columbia Mountains of Canada. A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Department of Engineering, Calgary, 270 ppGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of GeographyWest University of TimişoaraTimisoaraRomania

Personalised recommendations