Natural Hazards

, Volume 48, Issue 3, pp 399–424

Avalanche cycles in Austria: an analysis of the major events in the last 50 years

Original Paper


During the last 50 years, an average of 30 persons per year was killed by avalanches in Austria. About one-third of all avalanche fatalities occurred as a result of so-called ‘catastrophic avalanches’. ‘Catastrophic avalanches’ are spontaneously released avalanches that affect villages and cause damage to property (buildings, roads and other infrastructure). The biggest avalanche events in Austria were in 1950/1951 (135 fatalities), in 1953/1954 (143 fatalities) and in February 1999, when 38 persons were killed in Galtür and Valzur. This article deals with an analysis of nine major avalanche cycles in the last 55 years. An avalanche cycle in this article is defined as 50 recorded avalanches of at least size 3 in two days and/or 5 persons killed in villages within two days. The basis of this study are the well-documented records from Fliri (1998), who analysed natural disasters in the western part of Austria and the Trentino, including floods, mudflows, earthquakes and avalanches. The meteorological data were taken from two relevant observation sites in the northern part of the Austrian Alps, from two sites in an intermediate and continental region, respectively and from one site in the southern part of the Austrian Alps. Atmospheric patterns were analysed by using weather charts for the relevant periods. Both the meteorological data and the weather charts were provided by the Central Institute for Meteorology and Geodynamics (ZAMG). It was found that there was a major cycle every 6 years (on average). Two-thirds of all investigated cycles were characterised by a continuous increase of snow depth over a period of at least three days. In only three periods (1975, 1986, 1988), daily extreme values could be observed. More than 40% of all the cycles occurred in January. In two-thirds, a north-westerly oriented frontal zone was responsible for the formation of a major cycle. The remaining cycles were released by low-pressure areas over Central Europe and the Mediterranean Sea, respectively.


Avalanche accidents Avalanche cycles Avalanche climatology 


  1. Armstrong R, Armstrong B (1987) Snow and avalanche climates in the western United States: a comparison of maritime, intermountain and continental conditions. Int Assoc Hydrol Sci Publ 162:281–293Google Scholar
  2. Baur F, Hess P, Nagel H (1944) Kalender der Großwetterlagen Europas 1881–1939. Bad Homburg v. d. H.Google Scholar
  3. Birkeland K, Mock C (2001) The major snow avalanche cycle of February 1986 in the western United States. Nat Hazards 24:75–95CrossRefGoogle Scholar
  4. Birkeland K, Mock C, Shinker J (2001) Avalanche extremes and atmospheric circulation patterns. Ann Glaciol 32:135–140CrossRefGoogle Scholar
  5. Calondar GP (1986) Ursachen, Wahrscheinlichkeit und Intensität von Lawinenkatastrophen in den Schweizer Alpen, Diplomarbeit Universität ZürichGoogle Scholar
  6. Canadian Avalanche Association (CAA) (1995) Observation guidelines and recording standards for weather, snowpack and avalanches. Canadian Avalanche Centre, Revlstoke, BC, CanadaGoogle Scholar
  7. Colbeck S, Akitaya E, Armstrong R, Gubler H, Lafeuille J, Lied K, McClung D, Morris E (1990) The international classification of seasonal snow on the ground. International Commission on Snow and Ice, 23 pGoogle Scholar
  8. de Quervain M (1972) Lawinenbildung. In: Lawinenschutz in der Schweiz, Bd. 9 der Reihe Bündnerwald, Beiheft, pp 15–32Google Scholar
  9. de Quervain M, Meister R (1987) 50 years of snow profiles on the Weissfluhjoch and relations to the surrounding avalanche activity. Int Assoc Hydrol Sci Publ 162:161–180Google Scholar
  10. Dyck S, Peschke G (1983) Grundlagen der Hydraulik. VEB Verlag für Bauwesen, Berlin, 388 ppGoogle Scholar
  11. Fitzharris B, Bakkehoi S (1986) A synoptic climatology of major avalanche winters in Norway. J Climatol 6:431–446CrossRefGoogle Scholar
  12. Fliri F (1998) Naturchronik von Tirol. Universitätsverlag Wagner, Innsbruck, 369 ppGoogle Scholar
  13. Föhn P (1975) Analyse der Beziehungen zwischen Witterung, Schneedeckenaufbau und Großlawinen am Beispiel der Katastrophenlawinen vom April 1975, Winterbericht. Eidg Inst. Schnee- u. Lawinenforschung 39:209–218Google Scholar
  14. Gabl K (1988) Das Lawinenereignis im März 1988 in St. Anton am Arlberg aus meteorologischer Sicht. FBVA-Berichte 68:97–107Google Scholar
  15. Gabl K (1999) Der Schnee im Februar 1999 im Westen Österreichs aus meteorologischer und klimatologischer Sicht. Wildbach- und Lawinenverbau 64(141):69–80Google Scholar
  16. Gspan S (1973) Die Gefährdung durch Wildbäche und Muren im Bezirk Innsbruck- Land. Dissertation, University of InnsbruckGoogle Scholar
  17. Hächler P (1987) Analysis of the weather situations leading to severe and extraordinary avalanche situations. Int Assoc Hydrol Sci Publ 162:295–304Google Scholar
  18. Haegeli P, McClung D (2003) Avalanche characteristics of a transitional snow climate—Columbia Mountains, British Columbia, Canada. Cold Reg Sci Technol 37:255–276CrossRefGoogle Scholar
  19. Hauk E, Höller P, Schaffhauser H (1986) Lawinenereignisse und Witterungsablauf in Österreich - Winter 1984/85, 1985/86. FBVA-Berichte 16, 90 ppGoogle Scholar
  20. Hess P, Brezowsky H (1977) Katalog der Grosswetterlagen Europas (1881–1976). Berichte des Deutschen Wetterdienstes 113 (15)Google Scholar
  21. Höller P (2007) Avalanche hazards and mitigation in Austria: a review. Nat Hazards 43:81–101CrossRefGoogle Scholar
  22. Jomelli V, Delval C, Grancher D, Escande S, Brunstein D, Hetu B, Filion L, Pech P (2007) Probabilistic analysis of recent snow avalanche activity and weather in the French Alps. Cold Reg Sci Technol 47:180–192CrossRefGoogle Scholar
  23. Keylock C (2003) The North Atlantic Oscillation and snow avalanching in Iceland. Geophys Res Lett 30(5):58.1–58.4Google Scholar
  24. LaChapelle E (1966) Avalanche forecasting—a modern synthesis. Int Assoc Hydrol Sci Publ 69:350–356Google Scholar
  25. LaChapelle E (1980) The fundamental processes in conventional avalanche forecasting. J Glaciol 26(94):75–84Google Scholar
  26. Laternser M (2002) Snow and avalanche climatology of Switzerland. Doctoral thesis ETH Zürich, 137 ppGoogle Scholar
  27. Laternser M, Schneebeli M (2002) Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Nat Hazards 27:201–230CrossRefGoogle Scholar
  28. Lauscher F (1972) 25 Jahre mit täglicher Klassifikation der Wetterlage in den Ostalpenländern. Wetter und Leben 24:185–189Google Scholar
  29. Luzian R (1992) Lawinenereignisse und Witterungsablauf in Österreich - Winter 1987/88, 1988/89, 1989/90 und1990/91. FBVA-Berichte 68, 188 ppGoogle Scholar
  30. Luzian R (1998) Die Lawinen-Schadensereignisse in Österreich in der Periode 1967/68 bis 1992/93. Diploma Thesis, University of InnsbruckGoogle Scholar
  31. McClung D, Schaerer P (1993) The avalanche handbook. The Mountaineers, Seattle, 271 ppGoogle Scholar
  32. McClung D, Tweedy J (1994) Numerical avalanche prediction: Kootenay Pass, British Columbia, Canada. J Glaciol 40(135):350–358Google Scholar
  33. Merwald I (1970) Lawinenereignisse und Witterungsablauf in Österreich - Winter 1967/68 und 1968/69. Mitteilungen der Forstl. Bundesversuchsanstalt 87, 62 ppGoogle Scholar
  34. Merwald I (1971) Lawinenereignisse und Witterungsablauf in Österreich - Winter 1969/70. Mitteilungen der Forstl. Bundesversuchsanstalt 95, 134 ppGoogle Scholar
  35. Merwald I (1985) Lawinenereignisse und Witterungsablauf in Österreich - Winter 1974/75, 1975/76 und 1976/77. FBVA-Berichte 10, 76 ppGoogle Scholar
  36. Merwald I (1989) Lawinenereignisse und Witterungsablauf in Österreich - Winter 1982/83 und 1983/84. FBVA-Berichte 38, 92 ppGoogle Scholar
  37. Mock C, Birkeland K (2000) Snow avalanche climatology of the western United States mountain ranges. Bull Am Meteorol Soc 81:2367–2392CrossRefGoogle Scholar
  38. Mock C, Kay P (1992) Avalanche climatology of the western United States with emphasis on Alta, Utah. Prof Geogr 44(3):307–318CrossRefGoogle Scholar
  39. Neururer A (1992) Niederschlag, Neuschnee und Gesamtschnee in Vorarlberg und Tirol, Eigenverlage der ZAMG, Regionalstelle für Tirol und VorarlbergGoogle Scholar
  40. Neururer A (1996) Niederschlag, Neuschnee und Gesamtschnee in Vorarlberg und Tirol, Eigenverlage der ZAMG, Regionalstelle für Tirol und VorarlbergGoogle Scholar
  41. Patzelt G (1996) Naturereignisse im Ötztal. Unveröffentlichtes Manuskript, 37 ppGoogle Scholar
  42. Reardon B, Fagre D, Steiner R (2004) Natural avalanches and transportation: a case study from Glacier National Park, Montana, USA. In: Proceedings of international snow science workshop, 19–24 Sept 2004, Jackson Hole, Wyoming, pp 583–597Google Scholar
  43. Schellander H (2008) Extremwertstatistik – eine effiziente Methode zur Risikoabschätzung, ZAMG, Innsbruck (in press)Google Scholar
  44. Schmeiß L (1976) Die Lawinen des hinteren Stubaitales. Dissertation, University of InnsbruckGoogle Scholar
  45. Schneebeli M, Laternser M, Ammann W (1997) Destructive snow avalanches and climate change in the Swiss Alps. Eclogae Geologicae Helvetiae 90:457–461Google Scholar
  46. Schwarz R (1963) Muren und Murschäden im Ötztal. In: Ötztaler Buch, Schlern-Schriften 229, S.55–65Google Scholar
  47. Schweizer J, Wiesinger T (2001) Snow profile interpretation for stability evaluation. Cold Reg Sci Technol 33:179–188CrossRefGoogle Scholar
  48. Schweizer J, Jamieson JB, Skjonsberg D (1998) Avalanche forecasting for transportation corridor and backcountry in Glacier National Park (BC, Canada). In: Hestnes E (ed) 25 years of snow avalanche research. Voss, Norway, 12–16 May 1998. NGI Publication, Norwegian Geotechnical Institute, Oslo, Norway, pp 238–243Google Scholar
  49. Schweizer J, Kronholm K, Wiesinger T (2003) Verification of regional snowpack stability and avalanche danger. Cold Reg Sci Technol 37:277–288CrossRefGoogle Scholar
  50. Steinacker R (1991) Ostalpine Strömungslagenklassifikation. Mitt. Inst. Met. Geophys. Innsbruck, 16 ppGoogle Scholar
  51. Wakonigg H (1975) Die Schneeverhältnisse des österreichischen Alpenraumes. Wetter und Leben 27:193–203Google Scholar
  52. Wakonigg H (1983) 32 Jahre ostalpine Wetterlagen. Wetter und Leben 35:131–153Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Natural HazardsFederal Research Centre for Forests, Natural Hazards and LandscapeInnsbruckAustria

Personalised recommendations