Advertisement

Natural Hazards

, Volume 48, Issue 1, pp 17–39 | Cite as

A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany

  • Volker Meyer
  • Sebastian Scheuer
  • Dagmar Haase
Original Paper

Abstract

In this paper we develop a GIS-based multicriteria flood risk assessment and mapping approach. This approach includes flood risks which are not measured in monetary terms; it shows the spatial distribution of multiple risks, and it is able to deal with uncertainties in criteria values and to show their influence on the overall flood risk assessment. Additionally, the approach can be used to show the spatial allocation of the flood effects if risk reduction measures are implemented. The approach is applied to a pilot study for the River Mulde in Saxony, Germany, heavily affected by the hazardous flood in 2002. Therefore, a GIS database of economic, social and environmental risk criteria was created. Two different multicriteria decision rules, a disjunctive and an additive weighting approach, are utilised for an overall flood risk assessment in the area. For implementation, a software tool (FloodCalc) was developed supporting both, the risk calculation of the single criteria as well as the multicriteria analysis.

Keywords

Multicriteria analysis Flood risk Evaluation criteria Risk maps Criterion weights Decision rules 

Notes

Acknowledgements

We would like to thank Gerald Wenk for providing the inundation data, Frank Messner and Thilo Weichel for useful advice on an earlier version of this manuscript and Deborah Connolly for polishing the language of the paper. Further we thank two anonymous reviewers for their fruitful comments. The work described in this publication was supported by the European Community’s Sixth Framework Programme through the grant to the budget of the Integrated Project FLOODsite, Contract GOCE-CT-2004-505420. This paper reflects the authors’ views and not those of the European Community. Neither the European Community nor any member of the FLOODsite Consortium is liable for any use of the information in this paper.

References

  1. Aceves-Quesada F, Díaz-Salgado J, López-Blanco J (2006) Vulnerability assessment in a volcanic risk evaluation in Central Mexico through a multi-criteria-GIS approach. Nat Hazards 40(2):339–356CrossRefGoogle Scholar
  2. Akter T, Simonovic SP (2005) Aggregation of fuzzy views of a large number of stakeholders for multi-objective flood management decision-making. J Environ Manag 77(2):133–143CrossRefGoogle Scholar
  3. Bana E, Costa CA (1990) Reading in multiple criteria decision aid. Springer, BerlinGoogle Scholar
  4. Bana E, Costa CA, Da Silva PA, Nunes Correia F (2004) Multicriteria Evaluation of Flood Control Measures: The Case of Ribeira do Livramento. Water Resour Manag 18(21):263–283CrossRefGoogle Scholar
  5. Banse G, Bechmann G (1998) Interdisziplinäre Risikoforschung—eine Bibliographie. WiesbadenGoogle Scholar
  6. Belton V, Stewart TJ (2002) Multiple criteria decision analysis—an integrated approach. Kluwer, BostonGoogle Scholar
  7. Brouwer R, van Ek R (2004) Integrated ecological, economic and social impact assessment of alternative flood control policies in the Netherlands. Ecol Econ 50(1–2):1–21CrossRefGoogle Scholar
  8. Brüggemann P, Bücherl C, Pudenz S, Steinberg CEW (1999) Application of the concept of partial order on comparative evaluation of environmental chemicals. Acta hydrochim Hydrobiol 27(3):170–178Google Scholar
  9. Drechsler M (1999) Verfahren zur multikriteriellen Entscheidungsunterstützung bei Unsicherheit. In: Horsch H, Ring I (eds) Naturressourcenschutz und wirtschaftliche Entwicklung Nachhaltige Wasserbewirtschaftung und Landnutzung im Elbeeinzugsgebiet. LeipzigGoogle Scholar
  10. DTLR (Department for Transport, Local Government and the Regions) (2001) Multicriteria analysis: a manual. Report of the Department for Transport, Local Government and the Regions (UK)Google Scholar
  11. DVWK (Deutscher Verband für Wasserwirtschaft und Kulturbau) (1985) Ökonomische Methoden von Hochwasserschutzwirkungen. Arbeitsmaterialien zum methodischen Vorgehen. DVWK-MitteilungenGoogle Scholar
  12. Freistaat Sachsen (2003) Bericht der Sächsischen Staatsregierung zur Hochwasserkatastrophe im August 2002, Report of the Federal Government of Saxony on the Flood Catastrophe in August 2002Google Scholar
  13. Gouldby B, Samuels P (2005) Language of risk—project definitions. Floodsite Project Report T32-04-01Google Scholar
  14. IKSR (International Commision for the Protection of the Rhine) (2001) Übersichtskarten der Überschwemmungsgefährdung und der möglichen Vermögensschäden am Rhein. Abschlußbericht: Vorgehensweise zur Ermittlung der hochwassergefährdeten Flächen, Vorgehensweise zur Ermittlung der möglichen VermögensschädenGoogle Scholar
  15. Janssen R, Herwijnen M, Beinat E (2003) Definite—case studies and user manual. Vrije Universiteit Amsterdam/IVM, AmsterdamGoogle Scholar
  16. Keeney RL, Raiffa H (1993) Decisions with multiple objectives—preferences and value tradeoffs., Cambridge University Press, CambridgeGoogle Scholar
  17. Klauer B, Drechsler M, Messner F (2006) Multicriteria analysis under uncertainty with IANUS -method and empirical results. Environ Plan C Gov Policy 24:235–256CrossRefGoogle Scholar
  18. Knight FH (1921). Risk, uncertainty, and profit. Schaffner and Marx, BostonGoogle Scholar
  19. Kok M, Huizinga HJ, Vrouwenfelder ACWM, Barendregt A (2004) Standard method 2004. Damage and casualties caused by flooding. Highway and Hydraulic Engineering Department, ClientGoogle Scholar
  20. Mai S, Grabemann I, Eppel DP, Elsner A, Elsner W, Grabemann HJ, Kraft D, Meyer V, Otte C, Yu I, Wittig S, Zimmermann C (2007) KRIM: methode der erweiterten Risikoanalyse. In: Schuchardt B, Schirmer M (eds) Land unter? Klimawandel, Küstenschutz und Risikomanagement in Nordwestdeutschland: die Perspektive 2050 (in Print)Google Scholar
  21. Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, New YorkGoogle Scholar
  22. Malczewski J (2006) GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci 20(7):703–726CrossRefGoogle Scholar
  23. Malczewski J, Chapman T, Flegel C, Walters D, Shrubsole D, Healy MA (2003) GIS—multicriteria evaluation with ordered weighted averaging (OWA): case study of developing watershed management strategies. Environ Plan A 35(10):1769–1784CrossRefGoogle Scholar
  24. Merz R, Buck W (1999) Integrierte Bewertung wasserwirtschaftlicher Maßnahmen. Materialien, D. V. f. W. u. K. (DVWK), BonnGoogle Scholar
  25. Messner F, Penning-Rowsell E, Green C, Meyer V, Tunstall S, van der Veen A (2007) Guidelines for socio-economic Flood Damage Evaluation. FLOODsite-Report T09-06-01, 176 ppGoogle Scholar
  26. Meyer V (2005) Methoden der Sturmflut-Schadenspotenzialanalyse an der deutschen Nordseeküste, Vom Fachbereich Geowissenschaften und Geographie der Universität Hannover genehmigte. Dissertation, UFZ Dissertation 3/2005Google Scholar
  27. Munda G (1995) Multicriteria evaluation in a fuzzy environment—theory and applications in ecological economics. Physica Verlag, HeidelbergGoogle Scholar
  28. Munda G (2006) Social multi-criteria evaluation for urban sustainability policies. Land Use Policy 23(1):86–94CrossRefGoogle Scholar
  29. Omann I (2004) Multi-Criteria Decision Aid As An Approach For Sustainable Development Analysis And Implementation. Doctoral Thesis at the Karl-Franzens University, Graz: 272Google Scholar
  30. Penning-Rowsell E, Johnson C, Tunstall S, Tapsell S, Morris J, Chatterton J, Coker A, Green C (2003) The benefits of flood and coastal defence: techniques and data for 2003. Enfield, Flood Hazard Research CentreGoogle Scholar
  31. Proctor W, Drechsler M (2006) Deliberative multicriteria evaluation. Environ Plan C Gov Policy 24(2):169–190CrossRefGoogle Scholar
  32. Pudenz S, Brüggemann R, Luther B, Kaune A, Kreimes K (2000) An algebraic/graphical tool to compare ecosystems with respect to their pollution V: cluster analysis and Hasse diagrams. Chemosphere 40:10CrossRefGoogle Scholar
  33. Renn O (1998) Three decades of risk research: accomplishments and new challenges. J Risk Res 1(1):49–71CrossRefGoogle Scholar
  34. RPA (2004) Evaluating a multi-criteria analysis methodology for application to flood management and coastal defence appraisals. RandD Technical Report. DEFRAGoogle Scholar
  35. Schanze J (2006) Flood risk management—a basic framework. In: Schanze J, Zeman E, Marsalek J (eds) Flood risk management—hazards, vulnerability and mitigation measures. Springer, pp 149–167Google Scholar
  36. Scheuer S, Meyer V (2007) FloodCalc. Software tool for the calculation of multicriteria flood damage and risk maps. Version 1.0 alphaGoogle Scholar
  37. Simon U (2003) Multikriterielle Bewertung von wasserwirtschaftlichen Maßnahmen aus gewässerökologischer Sicht. Beispiel BerlinGoogle Scholar
  38. Simonovic SP, Nirupama N (2005) A spatial multi-objective decision-making under uncertainty for water resources management. J Hydroinform 7(2):117–133Google Scholar
  39. Socher M, Sieber HU, Müller G, Wundrak P (2006) Verfahren zur landesweiten Priorisierung von Hochwasserschutzmaßnahmen in Sachsen. Hydrologie und Wasserbewirtschaftung 50(3)Google Scholar
  40. Soerensen PB, Gyldenkaerne S, Lerche D, Brüggemann R, Thomsen M, Fauser P, Mogensen BB (2004) Probability approach applied for prioritisation using multiple criteria. In: Soerensen (ed) Order theory in environmental science. NERI Report 479Google Scholar
  41. Strager MP, Rosenberger RS (2006) Incorporating stakeholder preferences for land conservation: weights and measures in spatial MCA. Ecol Econ 57(13):627–639CrossRefGoogle Scholar
  42. Thinh NX, Hedel R (2004) A fuzzy compromise programming environment for the ecological evaluation of land use options. Conference proceedings of the EnviroInfo 2004Google Scholar
  43. Thinh NX, Vogel R (2006) GIS-based multiple criteria analysis for land-use suitability assessment in the context of flood risk management. InterCarto - InterGIS 12, BerlinGoogle Scholar
  44. Tkach RJ, Simonovic SP (1997) A new approach to multi-criteria decision making in water resources. J Geogr Inf Decis Anal 1(1):25–43Google Scholar
  45. Vincke P (1992) Multicriteria decision-aid. Wiley, ChichesterGoogle Scholar
  46. Wenk G, Rode M (2007) Inundation depth data of different recurrence intervals for the Vereinigte Mulde river in Saxony (unpublished data)Google Scholar
  47. Zimmermann HJ, Gutsche L (1991) Multi-criteria analyse—Einführung in die Theorie der Entscheidungen bei Mehrfachzielsetzungen. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.UFZ, Helmholtz Centre for Environmental Research, Department of EconomicsLeipzigGermany
  2. 2.Department Thematic Cartography and Remote SensingMartin-Luther-University Halle-Wittenberg, Institute for GeosciencesHalleGermany
  3. 3.UFZ, Helmholtz Centre for Environmental Research, Department of Computational Landscape EcologyLeipzigGermany

Personalised recommendations