Natural Hazards

, Volume 38, Issue 1–2, pp 63–78 | Cite as

Assessment of Discharge through a Dike Breach and Simulation of Flood Wave Propagation

  • Paul Kamrath
  • Markus Disse
  • Matthias Hammer
  • Jürgen Köngeter
Article

Abstract

This paper presents a simple and fast method to calculate flow through a dike breach. The approach was based on two-dimensional numerical simulations of idealized dike breakages at straight river-sections. As a result, computation of discharge through a breach can be achieved by use of the new developed formula (denoted as dike break formula). Furthermore, a methodology that combines one-dimensional hydrodynamic modelling, the dike break formula and a simple GIS-based method to estimate inundation areas is described. This fast and easy-to-handle tool can be utilized for near real-time forecasting or evacuation decisions. Detailed predictions were made for a number of flood and dike break scenarios at the River Rhine to prove the accuracy of the new method compared with two-dimensional numerical models.

Keywords

dike break inundation Poleni formula flood waves numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksyonovaa, T. I., Volkovich, V. V., Tetko, I. V. 2003Robust polynomial neural networks in quantitative-structure activity relationship studiesSyst. Anal. Model. Simul.4313311339Google Scholar
  2. Bates, P. D., Roo, A. P. J. 2000A simple raster based model for flood inundation simulationJ. Hydrol.2365477CrossRefGoogle Scholar
  3. Bates, P. D., Marks, K. J., Horrit, M. S. 2003Optimal use of high resolution topographic datain flood inundation modelsHydrol. Process.17537557CrossRefGoogle Scholar
  4. Baur, T., Lukowicz, J., Köngeter, J. 1997

    Numerical optimization of a Riverbed-geometry with special regard to erosion

    Watts, J. eds. Proc. 3rd Int. Conf. on River Flood HydraulicsStellenboschSouth Africa
    Google Scholar
  5. Bechteler, W., Hartman, S., Otto, A. J. 1994

    Coupling of 2D and 1D models and integration into Geographic Information Systems (GIS)

    White, W. R.Watts, J. eds. Proc. 2nd Int. Conf. on River Flood HydraulicsJohn Wiley and SonsChicester, UK155165
    Google Scholar
  6. Broich, K.: 1997, Computergestützte Analyse des Dammerosionsbruchs, Institut für Wasserwesen, UniBw München, Dissertation am Lehrstuhl Hydromechanik und Hydrologie, Mitteilungen 61, München.Google Scholar
  7. Bollrich, G. 1996Technische Hydromechanik I, Grundlagen4Verlag für BauwesenBerlin, GermanyGoogle Scholar
  8. Curtis, W. D., Logan, J. D., Parker, W. A. 1982Dimensional analysis and the π theoremLin. Alg. Appl.47117126CrossRefGoogle Scholar
  9. Dhondia, J. F. and Stelling, G. S.: 2002, Application of one-dimensional two-dimensional integrated hydraulic model for flood simulation and damage assessment. In: R. A. Falconer, B. Lin, E. L. Harris and C. A. M. E. Wilson (eds.), Proc. 5th International Conference in Hydroinformatics, Vol. 1, Cardiff, UK, pp. 265–276.Google Scholar
  10. Estrela, T., Quintas, L. 1994

    Use of GIS in the modelling of flows on floodplains

    White, W. R.Watts, J. eds. Proc. 2nd Int. Conf. on River Flood HydraulicsJohn Wiley and SonsUK177189
    Google Scholar
  11. Gianmarco, P. Di., Todini, E., Lamberti, P. 1996A conservative finite elements approach to overland flow: the control volume finite element formulationJ. Hydrol.175267291Google Scholar
  12. Köngeter, J., Briechle, S., and Liem, R.: 2001, Bestimmung der Überflutungsflächen zur Festlegung der Verbands- und Poldergrenzen der Deichverbände Friemersheim, Orsoy und Poll – Hydrodynamische Simulation ausgewählter Deichbruchszenarien entlang des Rheins, Technical Report, Institute of Hydraulic Engineering and Water Resources Management Aachen, Germany.Google Scholar
  13. Kuipers, J. and Vreugdenhil, C. B.: 1973, Calculations of two-dimensional horizontal flow, Delft Hydraulics Laboratories, Report No. S163–1.Google Scholar
  14. Muslu, Y. 2002Lateral weir flow model using a curve fitting analysisJ. Hydraulic Eng128712715Google Scholar
  15. Priestnall, G., Jaafar, J., Duncan, A. 2000Extracting urban features from LiDAR-derived digital surface modelsComput. Environ. Urban Syst.246578Google Scholar
  16. Rouvé, G. and Schröder, M.: 1993, One-dimensional vs. two-dimensional prediction of compound open channel flow. In: Advances in Hydro-Science and Engineering. Proc. of the ICHE-’93, Vol. 1, June 7–11, Washington DC, USA.Google Scholar
  17. Verheij, H. J.: 2002, Breaching in Cohesive Soils. WL|Delft Hydraulics, Research Report Q2959, Delft, The Netherlands.Google Scholar
  18. Visser, P. J.: 1998, Breach growth in sand-dikes, Doctoral dissertation (also published in the series “Comm. Hydraulic Geotechn. Eng.”, Fac. Civil Eng. Geosci.), Delft Univ. Techn., Rep. 98–1.Google Scholar
  19. Visser, P. J.: 1999, Breach erosion in sand-dikes. In: Proc. 26th Int. Conference Coastal Eng., Copenhagen, 1998, pp. 3516–3528.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Paul Kamrath
    • 1
  • Markus Disse
    • 2
  • Matthias Hammer
    • 3
  • Jürgen Köngeter
    • 1
  1. 1.Institute of Hydraulic Engineering and Water Resources ManagementRWTH Aachen UniversityAachenGermany
  2. 2.Institute of Hydrosciences, Department of Water Management and Resources EngineeringUniversity of Armed Forces MunichNeubibergGermany
  3. 3.Federal Institute of HydrologyKoblenzGermany

Personalised recommendations