Natural Hazards

, Volume 37, Issue 3, pp 331–372 | Cite as

Predicting Lahar-Inundation Zones: Case Study in West Mount Pinatubo, Philippines

Article

Abstract

This paper demonstrates techniques for pre-eruption prediction of lahar-inundation zones in areas where a volcano has not erupted within living memory and/or where baseline geological information about past lahars could be scarce or investigations to delimit past lahars might be incomplete. A lahar source (or proximal lahar-inundation) zone is predicted based on ratio of vertical descent to horizontal run-out of eruptive deposits that spawn lahars. Immediate post-eruption distal lahar-inundation zones are predicted based on “pre-eruption” distal lahar-inundation zones and on spatial factors derived from a digital elevation model. Susceptibility to distal lahar-inundation is estimated by weights-of-evidence, by logistic regression and by evidential belief functions. Predictive techniques are applied using a geographic information system and are tested in western part of Pinatubo volcano (Philippines). Predictive maps are compared with a forecast volcanic-hazard map through validation against a field-based volcanic-hazard map. The predictive model of proximal lahar-inundation zone has “true positive” prediction accuracy, “true negative” prediction accuracy, “false positive” prediction error and “false negative” prediction error that are similar to those of the forecast volcanic-hazard map. The predictive models of distal lahar inundation zones have higher “true positive” prediction accuracy and lower “false negative” prediction error than the forecast volcanic-hazard map, although the latter has higher “true negative” prediction accuracy and lower “false positive” prediction error than the former. The results illustrate utility of proposed predictive techniques in providing geo-information could be used, howbeit with caution, for planning to mitigate potential lahar hazards well ahead of an eruption that could generate substantial source materials for lahar formation.

Keywords

lahars predictive modeling weights-of-evidence logistic regression evidential belief functions DEM GIS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agterberg, F. P. 1992Combining indicator patterns in weights of evidence modeling for resource evaluationNonrenew. Resour.13950Google Scholar
  2. Agterberg, F. P. and Bonham-Carter, G. F.: 1990, Deriving weights of evidence from geoscience contour maps for the prediction of discrete events. In: Proceedings 22nd APCOM (Applications of Computers and Mathematics in the Mineral Industries) Symposium, Berlin, Germany, September 17–21, 1990, Technical University of Berlin, pp. 381–395Google Scholar
  3. Agterberg, F. P. and Bonham-Carter, G. F.: 1999, Logistic regression and weights of evidence modeling in mineral exploration. In: Proceedings 28th APCOM (Applications of Computers and Mathematics in the Mineral Industries) Symposium, Golden, CO, USA, 20–22 October 1999, Colorado School of Mines, pp. 483–490Google Scholar
  4. Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q., Wright, D. F. 1993

    Weights of evidence modeling and weighted logistic regression for mineral potential mapping

    Davis, J. C.Herzfeld, U. C. eds. Computers in Geology – 25 Years of ProgressOxford University PressNew York1332
    Google Scholar
  5. An, P. 1992Spatial Reasoning and Integration Techniques for Geophysical and Geological Exploration DataUniversity of ManitobaCanada280Ph.D. thesisGoogle Scholar
  6. An, P., Moon, W. M., and Bonham-Carter, G. F.: 1992, On knowledge-based approach on integrating remote sensing, geophysical and geological information. In: Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS), 1992, pp. 34–38Google Scholar
  7. An, P., Moon, W. M., Bonham-Carter, G. F. 1994An object-oriented knowledge representation structure for exploration data integrationNonrenew. Resour.3132145Google Scholar
  8. Bertucco, L., Coltelli, M., Nunnari, G., Occhipinti, L. 1999Cellular neural network for real-time monitoring of volcanic activityComput. Geosci.25101117Google Scholar
  9. Binaghi, E., Luzi, L., Madella, P., Pergalani, F., Rampini, A. 1998Slope instability zonation: A comparison between certainty factor and fuzzy Dempster–Shafer approachesNat. Hazards177797CrossRefGoogle Scholar
  10. Bishop, M. M., Feinberg, S. E., Holland, P. W 1975Discrete Multivariate Analysis: Theory and PracticeMIT PressCambridge, MA587Google Scholar
  11. Bonham-Carter, G. F 1994Geographic Information Systems for Geoscientists: Modelling with GISPergamonOntario398Google Scholar
  12. Bonham-Carter, G. F., Agterberg, F. P., Wright, D. F. 1988Integration of geological datasets for gold exploration in Nova ScotiaPhotogrammet. Eng. Remote Sens.5415851592Google Scholar
  13. Bonham-Carter, G. F., Agterberg, F. P., and Wright, D. E.: 1989, Weights of Evidence Modelling: A New Approach to Mapping Mineral Potential. In: F.P. Agterberg and G.F. Bonham-Carter (eds.), Statistical Applications in the Earth Sciences, Geological Survey of Canada, Paper 89-9, pp. 171–483.Google Scholar
  14. Canuti, P., Casagli, N., Catani, F., Falorni, G. 2002Modeling of the Guagua Pichincha volcano (Ecuador) laharsPhys. Chem. Earth2715874599Google Scholar
  15. Carranza, E. J. M.: 2002, Geologically-Constrained Mineral Potential Mapping: Examples from the Philippines, Ph.D. thesis, Delft University of Technology, The Netherlands, ITC Publication No. 86, International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, 480 ppGoogle Scholar
  16. Carranza, E. J. M., Hale, M. 2000Geologically-constrained probabilistic mapping of gold potential, Baguio district, PhilippinesNat. Resour. Res.9237253CrossRefGoogle Scholar
  17. Carranza, E. J. M., Hale, M. 2001Logistic regression for geologically-constrained mapping of gold potential, Baguio district, PhilippinesExplorat. Mining Geol.10165175Google Scholar
  18. Carranza, E. J. M., Hale, M. 2003Evidential belief functions for data-driven geologically-constrained mapping of gold potential, Baguio district, PhilippinesOre Geol. Rev.22117132CrossRefGoogle Scholar
  19. Connor, C. B., Hill, B. E., Winfrey, B., Franklin, N., Femina, P. C. 2001Estimation of volcanic hazards from tephra falloutNat. Hazards Rev.23342Google Scholar
  20. Costa, J. E. 1997Hydraulic modeling for lahar hazards at Cascades VolcanoesEnviron. Eng. Geosci.32130Google Scholar
  21. Cox, D. R., Snell, E. J 1989Analysis of Binary Data2Chapman & HallLondon236Google Scholar
  22. Crandell, D. R., Mullineaux, D. R. 1975Technique and rationale of volcanic-inundations appraisals in the Cascade Range, northwestern United StatesEnviron. Geol.12332Google Scholar
  23. Davis, J. C 1973Statistics and Data Analysis in Geology2John Wiley and SonsSingapore646Google Scholar
  24. Falco, I., Giodano, A., Luongo, G., Mazzarella, A., Tarantino, E. 2002The eruptive activity of Vesuvius and its neural architectureJ. Volcanol. Geotherm. Res.113111118Google Scholar
  25. Dempster, A. P. 1967Upper and lower probabilities induced by a multivalued mappingAnn. Math. Stat.38325339Google Scholar
  26. Dempster, A. P. 1968A generalization of Bayesian inferenceJ. Roy. Stat. Soc. B30205247Google Scholar
  27. Goodacre, A. K., Bonham-Carter, G. F., Agterberg, F. P., Wright, D. F. 1993A statistical analysis of the spatial association of seismicity with drainage patterns and magnetic anomalies in western QuebecTectonophysics217285305CrossRefGoogle Scholar
  28. Gorte, B. G. H., Koolhoven, W. 1990Interpolation between isolines based on the Borgefors distance transformITC J.1900-3245247Google Scholar
  29. Harris, D., Zurcher, L., Stanley, M., Marlow, J., Pan, G. 2003A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regressionNat. Resour. Res.12241255CrossRefGoogle Scholar
  30. Hayashi, J. N., Self, S. 1992A comparison of pyroelastic flow and debris avalanche mobilityJ. Geophys. Res.9790639071Google Scholar
  31. Iverson, R. M., Schilling, S. P., Vallance, J. W. 1998Objective delineation of lahar-inundation zonesGeol. Soc. Am. Bull110972984CrossRefGoogle Scholar
  32. Laenen, A. and Hansen, R. P.: 1988, Simulation of three lahars in the Mount St. Helens area, Washington, using a one-dimensional unsteady-state streamflow model, U.S. Geological Survey Water-Resources Investigations Report 88-4004Google Scholar
  33. Lecointre, J., Hogdson, K., Neall, V., Cronin, S. 2004Lahar-triggering mechanisms and hazard at Ruapehu volcano, New ZealandNat. Hazards3185109CrossRefGoogle Scholar
  34. Macedonio, G., Paresehi, M. T. 1992Numerical simulation of some lahars from Mount St. HelensJ. Volcanol. Geotherm. Res.546580CrossRefGoogle Scholar
  35. Major, J. J., Janda, R. J., Daag, A. S. 1996

    Watershed disturbance and lahars on the east side of Pinatubo volcano during the mid-June 1991 eruptions

    Newhall, C. G.Punongbayan, R. S. eds. Fire and Mud, Eruption and Lahars of Mt. PhilippinesUniversity of Washington PressPinatubo895919
    Google Scholar
  36. Major, J. J., Schilling, S. P., Pullinger, C. R., Escobar, C. D., and Howell, M. M.: 2001, Volcano-hazard zonation for San Vicente Volcano, El Salvador, U.S. Geological Survey Open File Report 01-367Google Scholar
  37. Malin, M. C., Sheridan, M. F. 1982Computer-assisted mapping of pyroclastic surgesScience217637640Google Scholar
  38. Mark, R. K., Ellen, S. D. 1995

    Statistical and simulation models for mapping debris-flow hazard

    Carrara, A.Guzzetti, F. eds. Geographical Information Systems in Assessing Natural HazardsKluwer Academic PublishersDordrecht93106
    Google Scholar
  39. Menard, S. 1995Applied Logistic Regression Analysis, Series: Qualitative Applications in the Social Sciences, No. 106Sage PublicationsThousand Oaks, CA98Google Scholar
  40. Moon, W. M.: 1989, Integration of remote sensing and geological/geophysical data using Dempster–Shafer approach. In: Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS), 1989, pp. 838–841Google Scholar
  41. Moon, W. M. 1990Integration of geophysical and geological data using evidential belief functionIEEE Trans. Geosci. Remote Sens.28711720Google Scholar
  42. Newhall, C. G., Punongbayan, R. S. 1996

    The narrow margin of successful of volcanic-risk mitigation

    Scarpa, R.Tilling, R. I. eds. Monitoring and Mitigation of Volcano HazardsSpringer-VerlagBerlin807838
    Google Scholar
  43. Newhall, C. G., Daag, A. S., Delfin, F. G.,Jr., Hoblitt, R. P., McGeehin, J., Pallister, J. S., Regalado, M. T. M., Rubin, M., Tubianosa, B. S., Tamayo, R. A.,Jr., Umbal, J. V. 1996

    Eruptive history of Pinatubo volcano

    Newhall, C. G.Punongbayan, R. S. eds. Fire and Mud, Eruption and Lahars of Mt. PhilippinesUniversity of Washington PressPinatubo165195
    Google Scholar
  44. Paladio-Melosantos, M. L. O., Solidum, R. U., Scott, W. E., Quiambao, R. B., Umbal, J. V., Rodolfo, K. S., Tubianosa, B. S., Delos Reyes, P. J., Alonso, R. A., Ruelo, H. B. 1996

    Tephra falls of the 1991 eruptions of Pinatubo volcano

    Newhall, C. G.Punongbayan, R. S. eds. Fire and Mud, Eruption and Lahars of Mt Pinatubo PhilippinesUniversity of Washington PressSeattle, WA513535
    Google Scholar
  45. Pan, G. C., Harris, D. P 2000Information Synthesis for Mineral ExplorationOxford University Press Inc.New YorkGoogle Scholar
  46. Pareschi, M. T. 1996

    Physical modeling of eruptive phenomena lahars

    Scarpa, R.Tilling, R. I. eds. Monitoring and Mitigation of Volcano HazardsSpringer-VerlagBerlin463489
    Google Scholar
  47. Pierson, T. C., Daag, A. S., Delos Reyes, P. J., Regalado, M. T. M., Solidum, R. U., Tubianosa, B. S. 1996

    Flow and deposition of posteruption hot lahars on the east side of Pinatubo volcano, July–October 1991

    Newhall, C. G.Punongbayan, L. S. eds. Fire and Mud, Eruption and Lahars of Mt. PhilippinesUniversity of Washington PressPinatubo921950
    Google Scholar
  48. Pierson, T. C., Janda, R. J., Umbal, J. V., and Daag, A. S.: 1992, Immediate and long-term hazards from lahars and excess sedimentation in rivers draining Pinatubo volcano, Philippines, U.S. Geological Survey Water Resources Investigations Report 92-4039Google Scholar
  49. Pinatubo Volcano Observatory Team: 1991, Lessons from a major eruption: Mt. Pinatubo, Philippines, Eos, Trans., Am. Geophys. Union 72, 545, 552–553, 555Google Scholar
  50. Porwal, A., Carranza, E. J. M., Hale, M. 2003Artificial neural networks for mineral potential mappingNat. Resour. Res.12155171Google Scholar
  51. Raines, G. L., Bonham-Carter, G. F., and Kemp, L.: 2000, Predictive probabilistic modeling using ArcView GIS, ArcUser April–June 2000, 45–48, http://esri.com/news/arcuser/0400/files/wofe.pdf
  52. Rodolfo, K. S., Umbal, J. V., Alonso, R. A., Remotigue, C. T., Paladio-Melosantos, M. L., Salvador, J. H. G., Evangelista, D., Miller, Y. 1996

    Two years of lahars on the western flank of Pinatubo volcano: Initiation, flow processes, deposits, and attendant geomorphic and hydraulic changes

    Newhall, C. G.Punongbayan, R. S. eds. Fire and Mud, Eruption and Lahars of Mt, Pinatubo, PhilippinesUniversity of Washington PressSeattle, WA9891013
    Google Scholar
  53. Rupert, M. G., Cannon, S. H., and Gartner, J. E.: 2003, Using logistic regression to predict the probability of debris flow occurring on areas recently burned by wildland fires, U.S. Geological Survey Open-File Report 03-500Google Scholar
  54. Schilling, S. P.: 1998, LAHARZ: GIS programs for automatic delineation of lahar hazard zones, U.S. Geological Survey Open-File Report 98-638Google Scholar
  55. Schilling, S. P., Vallance, J. W., Mactías, O., and Howell, M. M.: 2001, Lahar hazards at Agua Volcano, Guatemala, U.S. Geological Survey Open-File Report 01-432Google Scholar
  56. Scott, K. M., Vallance, J. W. and Pringle, P. T.: 1995, Sedimentology, behavior, and hazards of debris flows at Mount Rainier, Washington, U.S. Geological Survey Professional Paper 1547Google Scholar
  57. Scott, K. M., Macíias, J. L., Naranjo, J. A., Rodríguez, S., and McGeehin, J. P.: 2001, Catastrophic debris from landslides in volcanic terrains, mobility hazard assessment, and mitigation strategies, U.S. Geological Survey Professional Paper 1630Google Scholar
  58. Scott, W. E., Hoblitt, R. P., Torres, R. C., Self, S., Martinez, M. L., Nillos, T.,Jr. 1996

    Pyroclastic flows of the June 15, 1991, climactic eruption of Pinatubo volcano

    Newhall, C. G.Punongbayan, R. S. eds. Fire and Mud, Eruption and Lahars of Mt, Pinatubo, PhilippinesUniversity of Washington PressSeattle, WA545570
    Google Scholar
  59. Scott, W. E., Iverson, R. M., Schilling, S. P., and Fisher, B. J.: 1999, Volcano hazards in the Three Sisters Region, Oregon, U.S. Geological Survey Open-File Report 99-437Google Scholar
  60. Shafer, G. 1976A Mathematical Theory of EvidencePrinceton University PressPrinceton, NJ297Google Scholar
  61. Sheridan, M. F., Malin, M. C. 1983Application of computer-assisted mapping to volcanic hazard evaluation of surge eruptions: Vulcano, Lipari, and VesuviusJ. Volcanol. Geotherm. Res.17467488Google Scholar
  62. Stevens, N. S., Manville, V., Heron, D. W. 2002The sensitivity of a volcanic flow model to digital elevation model accuracy: Experiments with digitised map contours and interferometric SAR at Ruapehu and Taranaki volcanoes, New ZealandJ. Volcanol. Geotherm. Res.11989105Google Scholar
  63. Umbal, J. V., Rodolfo, K. S. 1996

    The 1991 lahars of southwestern Pinatubo volcano and evolution of the lahar-dammed Mapanuepe lake

    Newhall, C. G.Punongbayan, R. S. eds. Fire and Mud, Eruption and Lahars of Mt, Pinatubo, PhilippinesUniversity of Washington PressSeattle, WA951970
    Google Scholar
  64. Vallance, J. W. 2000

    Lahars

    Sigurdsson, H.Houghton, B.McNutt, S.Rymer, H.Stix, J. eds. Encyclopedia of VolcanoesAcademic PressSan Diego, CA601616
    Google Scholar
  65. Vallance, J. W., Cunico, M. L., and Schilling, S. P.: 2003, Debris-flow hazards caused by hydrologic events at Mount Rainer, Washington, U.S. Geological Survey Open-File Report 03-368Google Scholar
  66. Vallance, J. W., Schilling, S. P., and Devoli, G.: 2001a, Lahar hazards at Mombacho volcano, Nicaragua, U.S. Geological Survey Open-File Report 01-455Google Scholar
  67. Vallance, J. W., Schilling, S. P., Matías, O., Rose, W.E., and Howell, M. M., and Devoli, G.: 2001b, Volcano hazards at Fuego and Acatenango, Guatemala, U.S. Geological Survey Open-File Report 01-431Google Scholar
  68. Vignaux, M., Weir, G. J. 1990A general model for Mt. Ruapehu laharsBull. Volcanol.52381390CrossRefGoogle Scholar
  69. Walder, J. S., Gardner, C. A., Conrey, R. M., Fisher, B. J., and Schilling, S. P.: 1999, Volcano hazards in the Mount Jefferson region, Oregon, U.S. Geological Survey Open-File Report 99-024Google Scholar
  70. Waitt, R. B., Mastin, G. L., and Begét, J. E.: 1995, Volcanic-hazard zonation for Glacier Peak volcano, Washington, U.S. Geological Survey Open-File Report 95-499Google Scholar
  71. Walley, P. 1987Belief function representations of statistical evidenceAnn. Stat.1514391465Google Scholar
  72. Waythomas, C. F. and Miller, T. P.: 1999, Preliminary volcano-hazard assessment for Iliamna volcano, Alaska, U.S. Geological Survey Open-File Report 99-373Google Scholar
  73. Wright, D. F. and Bonham-Carter, G. F.: 1996, VHMS favourability mapping with GIS-based integration models, Chisel Lake–Anderson Lake area. In: G. F. Bonham-Carter, A. G. Galley, and G. E. M. Hall (eds.), EXTECH I: A Multidisciplinary Approach to Massive Sulphide Research in the Rusty Lake–Snow Lake Greenstone Belts, Manitoba, Geological Survey of Canada, Bulletin 426, pp. 339–376, 387–401Google Scholar
  74. Zadeh, L. A. 1986A simple view of the Dempster–Shafer theory of evidence and its implication for the rule of combinationAI Mag.78590Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Emmanuel John M. Carranza
    • 1
  • Ofelia T. Castro
    • 2
  1. 1.Department of Earth Systems AnalysisInternational Institute for Geo-Information Science and Earth Observation (ITC)EnschedeThe Netherlands
  2. 2.Mapping DepartmentNational Mapping and Resource Information Authority (NAMRIA)MakatiPhilippines

Personalised recommendations