Natural Hazards

, Volume 37, Issue 3, pp 277–314 | Cite as

Probabilistic Analysis of Tsunami Hazards*

  • Eric L. GeistEmail author
  • Tom Parsons


Determining the likelihood of a disaster is a key component of any comprehensive hazard assessment. This is particularly true for tsunamis, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models. We discuss probabilistic tsunami hazard analysis (PTHA) from the standpoint of integrating computational methods with empirical analysis of past tsunami runup. PTHA is derived from probabilistic seismic hazard analysis (PSHA), with the main difference being that PTHA must account for far-field sources. The computational methods rely on numerical tsunami propagation models rather than empirical attenuation relationships as in PSHA in determining ground motions. Because a number of source parameters affect local tsunami runup height, PTHA can become complex and computationally intensive. Empirical analysis can function in one of two ways, depending on the length and completeness of the tsunami catalog. For site-specific studies where there is sufficient tsunami runup data available, hazard curves can primarily be derived from empirical analysis, with computational methods used to highlight deficiencies in the tsunami catalog. For region-wide analyses and sites where there are little to no tsunami data, a computationally based method such as Monte Carlo simulation is the primary method to establish tsunami hazards. Two case studies that describe how computational and empirical methods can be integrated are presented for Acapulco, Mexico (site-specific) and the U.S. Pacific Northwest coastline (region-wide analysis).


tsunami probabilistic hazard analysis seismic hazard analysis Monte Carlo tide gauge empirical power-law 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, K.: 1995. Estimate of tsunami run-up heights from earthquake magnitudes, Tsunami: Progress in Prediction, Disaster Prevention and Warning. In Y. Tsuchiya & N. Shuto (Eds.), 21–35: Kluwer Academic Publishers.Google Scholar
  2. Abercrombie, R. E. 1995Earthquake source scaling relationships from −1 to 5 ML, using seismograms recorded at 2.5 km depthJ. Geophys. Res.1002401524036Google Scholar
  3. Adams, J. 1990Paleoseismicity of the Cascadia subduction zone: evidence from turbidites off the Oregon-Washington marginTectonics9569583Google Scholar
  4. Anderson, J. G., Brune, J. N. 1999Probabilistic seismic hazard analysis without the ergodic assumptionSeismol. Res. Lett.701928Google Scholar
  5. Anderson, J. G., Brune, J. N., Anooshehpoor, R., Ni, S. D. 2000New ground motion data and concepts in seismic hazard analysisCurr. Sci.7912781290Google Scholar
  6. Atwater, B. F. and Hemphill-Haley, E.: 1997, Recurrence intervals for great earthquakes of the past 3,500 years at northeastern Willapa Bay, Washington. Professional Paper 1576, U.S. Geological Survey, 108 ppGoogle Scholar
  7. Baptista, A. M., Priest, G. R., Murty, T. S. 1993Field survey of the 1992 Nicaragua tsunamiMar. Geodesy16169203Google Scholar
  8. Ben-Menahem, A., Rosenman, M. 1972Amplitude patterns of tsunami waves from submarine earthquakesJ. Geophys. Res.7730973128Google Scholar
  9. Bilek, S. L., Lay, T. 1999Rigidity variations with depth along interplate megathrust faults in subduction zonesNature400443446CrossRefGoogle Scholar
  10. Bilek, S. L. and Lay, T.: 2000, Depth dependent rupture properties in circum-Pacific subduction zones, In: J. B. Rundle, D. L. Turcotte and W. Klein (eds), GeoComplexity and the Physics of Earthquakes, American Geophysical Union, pp. 165–186Google Scholar
  11. Birkeland, K. W., Landry, C. C. 2002Power-laws and snow avalanchesGeophys. Res. Lett.2949-149-3CrossRefGoogle Scholar
  12. Bogen, K. 1994A note on compounded conservatismRisk Anal.14379381Google Scholar
  13. Boore, D. M., Joyner, W. B., Fumal, T. E. 1997Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent workSeismol. Res. Lett.68128153Google Scholar
  14. Borrero, J. C.: 2001, Changing field data gives better model results: an example from Papua New Guinea. International Tsunami Symposium 2001, Seattle, Washington, pp. 397–405Google Scholar
  15. Borrero, J. C., Ortiz, M., Titov, V. V., Synolakis, C. E. 1997Field survey of Mexican tsunami produces new data, unusual photosEos Trans. Am. Geophys. Union788588Google Scholar
  16. Burroughs, S. M., Tebbens, S. F. 2001Upper-truncated power laws in natural systemsPure Appl. Geophys.158741757Google Scholar
  17. Burroughs, S. M., Tebbens, S. F. 2005Power law scaling and probabilistic forecasting of tsunami runup heightsPure Appl. Geophys.162331342CrossRefGoogle Scholar
  18. Comer, R. P. 1980Tsunami height and earthquake magnitude: theoretical basis of an empirical relationGeophys. Res. Lett.7445448Google Scholar
  19. Coppersmith, K. J. and Youngs, R. R.: 1986, Capturing uncertainty in probabilistic seismic hazard assessments within intraplate tectonic environments, Proceedings of the Third U.S. National Conference on Earthquake Engineering, Charleston, South Carolina, pp. 301–312Google Scholar
  20. Cornell, C. A. 1968Engineering seismic risk analysisBull. Seismol. Soc. Am.5815831606Google Scholar
  21. Cramer, C. H., Petersen, M. D., Reichle, M. S. 1996A Monte Carlo approach in estimating uncertainty for a seismic hazard assessment of Los Angeles, Ventura, and Orange counties, CaliforniaBull. Seismol. Soc. Am.8616811691Google Scholar
  22. Crawford, P. L.: 1987, Tsunami predictions for the coast of Alaska: Kodiak Island to Ketchikan. Technical Report CERC-87-7, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, 137 ppGoogle Scholar
  23. DeShon, H. R., Schwartz, S. Y., Bilek, S. L., Dorman, L. M., Gonzalez, V., Protti, J. M., Flueh, E., Dixon, T. H. 2003Seismogenic zone structure of the southern Middle America Trench, Costa RicaJ. Geophys. Res.1081214 ESE 12–1-ESECrossRefGoogle Scholar
  24. Downes, G. L. and Stirling, M. W.: 2001, Groundwork for development of a probabilistic tsunami hazard model for New Zealand, International Tsunami Symposium 2001, Seattle, Washington, pp. 293–301Google Scholar
  25. Dziewonski, A. M., Anderson, D. L. 1981Preliminary reference Earth modelPhys. Earth Planet. Interiors25297356CrossRefGoogle Scholar
  26. Ebel, J. E., Kafka, A. L. 1999A Monte Carlo approach to seismic hazard analysisBull. Seismol. Soc. Am.89854866Google Scholar
  27. Field, E. H., Jackson, D. D., Dolan, J. F. 1999A mutually consistent seismic-hazard source model for southern CaliforniaBull. Seismol. Soc. Am.89559578Google Scholar
  28. Frankel, A. D., Mueller, C. S., Barnhard, T., Perkins, D. M., Leyendecker, E. V., Dickman, N., Hanson S., and Hopper, M.: 1996, National seismic-hazard maps: Documentation June 1996. Open-File Report 96-532, U.S. Geological Survey, 41 ppGoogle Scholar
  29. Frankel, A. D., Petersen, M. D., Mueller, C. S., Haller, K. M., Wheeler, R. L., Leyendecke, E. V., Wesson, R. L., Harmsen, S. C., Cramer, C. H., Perkins, D. M., and Rukstales, K. S.: 2002, Documentation for the 2002 Update of the National Seismic Hazard Maps. Open-File Report 02-420, U.S. Geological Survey, 33 ppGoogle Scholar
  30. Garcia, A. W. and Houston, J. R.: 1975, Type 16 Flood Insurance Study: Tsunami Predictions for Monterey and San Francisco Bays and Puget Sound. Technical Report H-75-17, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, 263 ppGoogle Scholar
  31. Geist, E. L. 1999Local tsunamis and earthquake source parametersAdv. Geophys.39117209Google Scholar
  32. Geist, E. L.: 2002, Complex earthquake rupture and local tsunamis, J. Geophys. Res. 107, ESE 2-1–ESE 2-16Google Scholar
  33. Geist, E. L., 2005: Local Tsunami Hazards in the Pacific Northwest from Cascadia Subduction Zone Earthquakes. U.S. Geological Survey Professional Paper 1661-B, 17 ppGoogle Scholar
  34. Geist, E. L., Dmowska, R. 1999Local tsunamis and distributed slip at the sourcePure Appl. Geophys.154485512CrossRefGoogle Scholar
  35. Geist, E. L., Bilek, S. L. 2001Effect of depth-dependent shear modulus on tsunami generation along subduction zonesGeophys. Res. Lett.2813151318CrossRefGoogle Scholar
  36. Geller, R. J. 1976Scaling relations for earthquake source parameters and magnitudesaBull. Seismol. Soc. Am.6615011523Google Scholar
  37. Goldfinger, C. Nelson, C. H. Johnson, J. E. The Shipboard Scientific Party2003Holocene earthquake records from the Cascadia subduction zone and northern San Andreas fault based on precise dating of offshore turbiditesAnnu. Rev. Earth Planet. Sci.31555577CrossRefGoogle Scholar
  38. González, F. I., Satake, K., Boss, E. F., Mofjeld, H. O. 1995Edge wave and non-trapped modes of the 25 April 1992 Cape Mendocino tsunamiPure Appl. Geophys.144409426CrossRefGoogle Scholar
  39. Harmsen, S. C., Frankel, A. D. 2001Geographic deaggregation of seismic hazard in the United StatesBull. Seismol. Soc. Am.911326Google Scholar
  40. Hino, R., Tanioka, Y., Kanazawa, T., Sakai, S., Nishino, M., Suyehiro, K. 2001Micro-tsunami from a local interplate earthquake detected by cabled offshore tsunami observation in northeastern JapanGeophys. Res. Lett.2835333536CrossRefGoogle Scholar
  41. Hirata, K., Takahashi, H., Geist, E. L., Satake, K., Tanioka, Y., Sugioka, H., Mikada, H. 2003Source depth dependence of micro-tsunamis recorded with ocean-bottom pressure gauges; the January 28, 2000 Mw 6.8 earthquake off Nemuro Peninsula, JapanEarth Planet. Sci. Lett.208305318CrossRefGoogle Scholar
  42. Horikawa, K. and Shuto, N.: 1983, Tsunami disasters and protection measures in Japan, In: K. Iida and T. Iwasaki (eds), Tsunamis-Their Science and Engineering, Terra Scientific Publishing Company, pp. 9–22Google Scholar
  43. Houston, J. R.: 1980, Type 19 Flood Insurance Study, Tsunami Predictions for Southern California. Technical Report HL-80-18, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MSGoogle Scholar
  44. Houston, J. R., Carver, R. D. and Markle, D. G.: 1977, Tsunami-wave elevation frequency of occurrence for the Hawaiian Islands. Technical Report H-77-16, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, 66 ppGoogle Scholar
  45. Hyndman, R. D., Wang, K. 1994The rupture zone of Cascadia great earthquakes from current deformation and the thermal regimeJ. Geophys. Res1002213322154Google Scholar
  46. Iida, K., Cox, D. C., Pararas-Carayannis, G. 1967Preliminary catalog of tsunamis occurring in the Pacific Ocean. HIG 67-10Hawaii Institute of Geophysics, University of HawaiiHonolulu131Google Scholar
  47. Imamura, F., Shuto, N., Ide, S., Yoshida, Y., Abe, K. 1993Estimate of the tsunami source of the 1992 Nicaraguan earthquake from tsunami dataGeophys. Res. Lett.2015151518Google Scholar
  48. Ito, K., Matsuzaki, M. 1990Earthquakes and self-organized critical phenomenaJ. Geophys. Res.9568536860Google Scholar
  49. Kagan, Y. Y. 1997Seismic moment-frequency relation for shallow earthquakes: regional comparisonJ. Geophys. Res.10228352852CrossRefGoogle Scholar
  50. Kagan, Y. Y. 1999Universality of the seismic-moment–frequency relationPure Appl. Geophys.155537573Google Scholar
  51. Kagan, Y. Y. 2002aSeismic moment distribution revisited: II. Moment conservation principleGeophys. J. Int.149731754CrossRefGoogle Scholar
  52. Kagan, Y. Y. 2002bSeismic moment distribution revisited: I. Statistical ResultsGeophys. J. Int.148520541CrossRefGoogle Scholar
  53. Kagan, Y. Y., Jackson, D. D. 1995New seismic gap hypothesis: five years afterJ. Geophys. Res.10039433959Google Scholar
  54. Kagan, Y. Y., Jackson, D. D. 2000Probabilistic forecasting of earthquakesGeophys. J. Int.143438453Google Scholar
  55. Kajiura, K. 1963The leading wave of a tsunamiBull. Earthquake Res. Inst.41535571Google Scholar
  56. Kajiura, K. 1981Tsunami energy in relation to parameters of the earthquake fault modelBull. Earthquake Res. Inst.56415440Google Scholar
  57. Kanamori, H., Anderson, D. L. 1975Theoretical basis of some empirical relations in seismologyBull. Seismol. Soc. Am.6510731095Google Scholar
  58. Kockelman, W. J.: 1989, Reducing earthquake hazards in Oregon and Washington: an introduction to the five components necessary for effective hazard reduction. Open-File Report 89-465, U. S. Geological Survey, 190–212 ppGoogle Scholar
  59. Lin, I., Tung, C. C. 1982A preliminary investigation of tsunami hazardBull. Seismol. Soc. Am.7223232337Google Scholar
  60. Malamud, B. D., Turcotte, D. L., Barton, C. C. 1996The 1993 Mississippi River Flood: a one hundred or a one thousand year event?Environ. Eng. Geosci.2479486Google Scholar
  61. Malamud, B. D., Turcotte, D. L., Guzzetti, F., Reichenbach, P. 2004Landslide inventories and their statistical propertiesEarth Surface Proc. Landforms296877111Google Scholar
  62. Matsuyama, M., Walsh, J. P., Yeh, H. 1999The effect of bathymetry on tsunami characteristics at Sissano Lagoon, Papua New GuineaGeophys. Res. Lett.2635133516CrossRefGoogle Scholar
  63. Miller, S. A. 2002Earthquake scaling and the strength of seismogenic faultsGeophys. Res. Lett.2927–127–4CrossRefGoogle Scholar
  64. Mofjeld, H. O., Foreman, M. G. G., Ruffman, A. 1997West Coast tides during Cascadia subduction zone tsunamisGeophys. Res. Lett.2422152218CrossRefGoogle Scholar
  65. National Research Council (NRC)1988Probabilistic Seismic Hazard AnalysisNational Academy PressWashington, DC97Google Scholar
  66. National Research Council (NRC)1997Review of Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of ExpertsNational Academy PressWashington, DC73Google Scholar
  67. Ortiz, M., Kostoglodov, V., Singh, S. K., Pacheco, J. F. 2000New constraints on the uplift of October 9, 1995 Jalisco-Colima earthquake (Mw 8) based on the analysis of tsunami records at Manzanillo and Navidad, MexicoGeofisica Int.39349357Google Scholar
  68. Pacheco, J. F., Scholz, C. H., Sykes, L. R. 1992Changes in frequency-size relationship from small to large earthquakesNature3557173CrossRefGoogle Scholar
  69. Parsons, T., Trehu, A. M., Luetgert, J. H., Miller, K., Kilbride, F., Wells, R. E., Fisher, M. A., Flueh, E., ten Brink, U. S., Christensen, N. I. 1998A new view into the Cascadia subduction zone and volcanic arc: implications for earthquake hazards along the Washington marginGeology26199202CrossRefGoogle Scholar
  70. Pelayo, A. M., Wiens, D. A. 1992Tsunami earthquakes: slow thrust-faulting events in the accretionary wedgeJ. Geophys. Res.971532115337Google Scholar
  71. Petersen, M. D., Cramer, C. H., Frankel, A. D. 2002Simulations of seismic hazard for the Pacific Northwest of the United States from earthquakes associated with the Cascadia subduction zonePure Appl. Geophys.15921472168CrossRefGoogle Scholar
  72. Pisarenko, V. F., Sornette, D. 2004Statistical detection and characterization of a deviation from the Gutenberg–Richter distribution above magnitude 8Pure Appl. Geophys.161839864CrossRefGoogle Scholar
  73. Polet, J., Kanamori, H. 2000Shallow subduction zone earthquakes and their tsunamigenic potentialGeophys. J. Int.142684702CrossRefGoogle Scholar
  74. Rabinovich, A. B. 1997Spectral analysis of tsunami waves: separation of source and topography effectsJ. Geophys. Res.1021266312676CrossRefGoogle Scholar
  75. Rikitake, T., Aida, I. 1988Tsunami hazard probability in JapanBull. Seismol. Soc. Am.7812681278Google Scholar
  76. Romanowicz, B., Rundle, J. B. 1993On scaling relationships for large earthquakesBull. Seismol. Soc. America8312941297Google Scholar
  77. Rong, Y., Jackson, D. D. and Kagan, Y. Y.: 2003, Seismic gaps and earthquakes, J. Geophys. Res. 108, ESE 6–1 −6–14Google Scholar
  78. Rubinstein, R. Y.: 1981, Simulation and the Monte Carlo Method, Wiley, 278 ppGoogle Scholar
  79. Rundle, J. B. 1989Derivation of the complete Gutenberg–Richter magnitude-frequency relation using the principle of scale invarianceJ. Geophys. Res.941233712342Google Scholar
  80. Sanchez, A. J., Farreras, S. F. 1993Catalog of tsunamis on the western coast of Mexico. World Data Center A for Solid Earth Geophysics Publication SE-50National Geophysical Data CenterBoulder, Colorado79Google Scholar
  81. Satake, K.: 2002, Tsunamis. In: W. H. K. Lee, H. Kanamori, P. C. Jennings and C. Kisslinger (eds), International Handbook of Earthquake and Engineering Seismology, International Association of Seismology and Physics of the Earth’s Interior, pp. 437–451Google Scholar
  82. Satake, K., Wang, K., and Atwater, B.F.: 2003, Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions, J. Geophys. Res. 108, ESE 7-1–7-17Google Scholar
  83. Savage, J. C. 1991Criticism of some forecasts of the National Earthquake Prediction Evaluation CouncilBull. Seismol. Soc. Am.81862881Google Scholar
  84. Savage, J. C. 1992The uncertainty in earthquake conditional probabilitiesGeophys. Res. Lett.19709712Google Scholar
  85. Scholz, C. H. 1982Scaling laws for large earthquakes: consequences for physical modelsBull. Seismol. Soc. Am.72114Google Scholar
  86. Schwartz, S. Y. 1999Noncharacteristic behavior and complex recurrence of large subduction zone earthquakesJ. Geophys. Res1042311123125CrossRefGoogle Scholar
  87. Senior Seismic Hazard Analysis Committee (SSHAC): 1997, Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. Main Report NUREG/CR-6372 UCRL-ID-122160 Vol. 1, U.S. Nuclear Regulatory Commission, 256 ppGoogle Scholar
  88. Shaw, B. E., Scholz, C. H. 2001Slip-length scaling in large earthquakes: observations and theory and implications for earthquake physicsGeophys. Res. Lett.2829952998CrossRefGoogle Scholar
  89. Shuto, N. 1991Numerical simulation of tsunamis – its present and near futureNat. Hazards4171191CrossRefGoogle Scholar
  90. Singh, S. K., Rodriguez, M., Esteva, L. 1983Statistics of small earthquake and frequency of occurrence of large earthquakes along the Mexican subduction zoneBull. Seismol. Soc. Am.7317791796Google Scholar
  91. Soloviev, S. L.: 1969, Recurrence of tsunamis in the Pacific. In: W. M. Adams (ed.), Tsunamis in the Pacific Ocean, East-West Center Press, pp. 149–163Google Scholar
  92. Soloviev, S. L. and Go, Ch. N.: 1984: Catalog of tsunamis on the eastern shore of the Pacific Ocean. Canadian Translation of Fisheries and Aquatic Sciences No. 5078, Canada Insitute for Scientific and Technical Information, Ontario, Canada, 285 ppGoogle Scholar
  93. Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N. A., Iwasaki, Y., Kagawa, T., Smith, N., Kowada, A. 1999Characterizing crustal earthquake slip models for the prediction of strong ground motionSeismol. Res. Lett.705980Google Scholar
  94. Sornette, D., Virieux, J. 1992Linking short-timescale deformation to long-timescale tectonicsNature357401404CrossRefGoogle Scholar
  95. Suárez, G., Sánchez, O. 1996Shallow depth of seismogenic coupling in southern Mexico: implications for the maximum size of earthquakes in the subduction zonePhys. Earth Planet. Int.935361Google Scholar
  96. Suárez, G., Monfret, T., Wittlinger, G., David, C. 1990Geometry of subduction and depth of the seismogenic zone in the Guerrero gap, MexicoNature345336338CrossRefGoogle Scholar
  97. Tadepalli, S., Synolakis, C. E. 1996Model for the leading waves of tsunamisPhys. Rev. Lett.7721412144CrossRefGoogle Scholar
  98. Tanioka, Y., Satake, K. 1996Tsunami generation by horizontal displacement of ocean bottomGeophys. Res. Lett.23861865Google Scholar
  99. Tichelaar, B. W., Ruff, L. J. 1993Depth of seismic coupling along subduction zonesJ. Geophys. Res.9820172037Google Scholar
  100. Tinti, S., Armigliato, A. 2003The use of scnarios to evaluate the tsunami impact in southern ItalyMar. Geology199221243Google Scholar
  101. Titov, V. V., Synolakis, C. E. 1997Extreme inundation flows during the Hokkaido-Nansei-Oki tsunamiGeophys. Res. Lett.2413151318CrossRefGoogle Scholar
  102. Toro, G. R., Abrahamson, N. A., Schneider, J. F. 1997Model of strong ground motions from earthquakes in central and eastern North America: best estimates and uncertaintiesSeismol. Res. Lett.684157Google Scholar
  103. U.S. Interagency Advisory Committee on Water Data: 1982, Guidelines for determining flood flow frequency. Bulletin 17-B of the Hydrology Subcommittee, U.S. Geological Survey, Office of Water Data Coordination, Reston, Virginia, 183 ppGoogle Scholar
  104. Valdes, C. M., Mooney, W. D., Singh, S. K., Meyer, R. P., Lomnitz, C., Luetgert, J. H., Helsley, C. E., Lewis, B. T. R., Mena, M. 1986Crustal structure of Oaxaca, Mexico, from seismic refraction measurementsBull. Seismol. Soc. Am.76547563Google Scholar
  105. Vere-Jones, D., Robinson, R., Yang, W. 2001Remarks on the accelerated moment release model: problems of model formulation, simulation and estimationGeophys. J. Int.144517531CrossRefGoogle Scholar
  106. Ward, S. N. 1980Relationships of tsunami generation and an earthquake sourceJ. Phys. Earth28441474Google Scholar
  107. Ward, S. N. 1982On tsunami nucleation II. An instantaneous modulated line sourcePhys. Earth Planet. Int.27273285Google Scholar
  108. Ward, S. N. 1991A synthetic seismicity model for the Middle America trenchJ. Geophys. Res.962143321442Google Scholar
  109. Ward, S. N. 1992An application of synthetic seismicity in earthquake statistics: The Middle America trenchJ. Geophys. Res.9766756682Google Scholar
  110. Ward, S. N. 1994A multidisciplinary approach to seismic hazard in southern CaliforniaBull. Seismol. Soc. Am.8412931309Google Scholar
  111. Ward, S. N. 1996A synthetic seismicity model for southern California: cycles, probabilities and hazardsJ. Geophys. Res.1012239322418Google Scholar
  112. Ward, S. N. 2000San Francisco Bay area earthquake simulations: a step toward a standard physical earthquake modelBull. Seismol. Soc. Am.90370386CrossRefGoogle Scholar
  113. Ward, S. N. 2001Landslide tsunamiJ. Geophys. Res.1061120111215CrossRefGoogle Scholar
  114. Ward, S. N.: 2002, Tsunamis, In: R. A. Meyers (ed.), The Encyclopedia of Physical Science and Technology, Academic Press, pp. 175–191Google Scholar
  115. Ward, S. N., Asphaug, E. 2000Asteroid impact tsunami: a probabilistic hazard assessmentIcarus1456478CrossRefGoogle Scholar
  116. Wells, D. L., Coppersmith, K. J. 1994New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacementBull. Seismol. Soc. Am.849741002Google Scholar
  117. Wesnousky, S. G. 1994The Gutenberg–Richter or characteristic earthquake distribution, which is it?Bull. Seismol. Soc. Am.8419401959Google Scholar
  118. Wessel, P., Smith, W. H. F. 1995New version of the Generic Mapping Tools releasedEos Trans. Am. Geophys. Union76F329Google Scholar
  119. Wyss, M. 1979Estimating maximum expectable magnitude of earthquake from fault dimensionsGeology6336340Google Scholar
  120. Youngs, R. R., Arabasz, W. J., Anderson, R. E., Ramelli, A. R., Ake, J. P., Slemmons, D. B., McCalpin, J. P., Doser, D. I., Fridrich, C. J., Swan, F. H.,III, Rogers, A., Yount, J. C., Anderson, L. W., Smith, K. D., Bruhn, R. L., Knuepfer, P. L. K., Smith, R. B., dePolo, C. M., O’Leary, D. W., Coppersmith, K. J., Pezzopane, S. K., Schwartz, D. P., Whitney, J. W., Olig, S. S., Toro, G. R. 2003A methodology for probabilistic fault displacement hazard analysis (PFDHA)Earthquake Spectra19191219CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.U.S. Geological SurveyMenlo ParkUSA

Personalised recommendations