Brain Cell Biology

, Volume 36, Issue 1–4, pp 141–154 | Cite as

Improved expression of halorhodopsin for light-induced silencing of neuronal activity

  • Shengli Zhao
  • Catarina Cunha
  • Feng Zhang
  • Qun Liu
  • Bernd Gloss
  • Karl Deisseroth
  • George J. Augustine
  • Guoping Feng
Article

Abstract

The ability to control and manipulate neuronal activity within an intact mammalian brain is of key importance for mapping functional connectivity and for dissecting the neural circuitry underlying behaviors. We have previously generated transgenic mice that express channelrhodopsin-2 for light-induced activation of neurons and mapping of neural circuits. Here we describe transgenic mice that express halorhodopsin (NpHR), a light-driven chloride pump that can be used to silence neuronal activity via light. Using the Thy-1 promoter to target NpHR expression to neurons, we found that neurons in these mice expressed high levels of NpHR-YFP and that illumination of cortical pyramidal neurons expressing NpHR-YFP led to rapid, reversible photoinhibition of action potential firing in these cells. However, NpHR-YFP expression led to the formation of numerous intracellular blebs, which may disrupt neuronal function. Labeling of various subcellular markers indicated that the blebs arise from retention of NpHR-YFP in the endoplasmic reticulum. By improving the signal peptide sequence and adding an ER export signal to NpHR-YFP, we eliminated the formation of blebs and dramatically increased the membrane expression of NpHR-YFP. Thus, the improved version of NpHR should serve as an excellent tool for neuronal silencing in vitro and in vivo.

References

  1. Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K., and de Lecea, L. (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424PubMedCrossRefGoogle Scholar
  2. Arenkiel, B. R., Peca, J., Davison, I. G., Feliciano, C., Deisseroth, K., Augustine, G. J., Ehlers, M. D., and Feng, G. (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218PubMedCrossRefGoogle Scholar
  3. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S., and Roth, B. L. (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 104, 5163–5168PubMedCrossRefGoogle Scholar
  4. Bendtsen, J. D., Nielsen, H., von Heijne, G., Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795PubMedCrossRefGoogle Scholar
  5. Bi, A., Cui, J., Ma, Y. P., Olshevskaya, E., Pu, M., Dizhoor, A. M., and Pan, Z. H. (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33PubMedCrossRefGoogle Scholar
  6. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth K. (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268PubMedCrossRefGoogle Scholar
  7. Caroni, P. (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J. Neurosci. Methods 71, 3–9PubMedCrossRefGoogle Scholar
  8. Deisseroth K., Feng G., Majewska A., Ting A. E., Miesenböck G., and Schnitzer M. J. (2006). Next-generation optical technologies for illuminating genetically-targeted brain circuits. J. Neurosci. 26, 10380–10386PubMedCrossRefGoogle Scholar
  9. Derby, M. C., and Gleeson, P. A. (2007) New insights into membrane trafficking and protein sorting. Int. Rev. Cytol. 261, 47–116PubMedCrossRefGoogle Scholar
  10. Ehlers, M. D. (2000) Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525PubMedCrossRefGoogle Scholar
  11. Ernst, O. P., Sánchez Murcia, P. A., Daldrop, P., Tsunoda, S. P., Kateriya, S., and Hegemann, P. (2008) Photoactivation of channelrhodopsin. J. Biol. Chem. 283, 1637–1643PubMedCrossRefGoogle Scholar
  12. Feng, G., Hood, R., Bernstein, M., Keller-Peck, C., Nguyen, Q., Wallace, M., Nerbonne, J. M., Litchman, J. W. and Sanes, J. R (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51PubMedCrossRefGoogle Scholar
  13. Feng, G., Lu, J., and Gross, J. (2004) Generation of transgenic mice. Methods Mol. Med. 99, 255–267PubMedGoogle Scholar
  14. Gradinaru, V., Thompson, K. R., and Deisseroth, K. (2008). eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 2008 Aug 2 [Epub ahead of print]Google Scholar
  15. Gradinaru, V., Thompson, K. R., Zhang, F., Mogri, M., Kay, K., Schneider, M. B., and Deisseroth, K. (2007). Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27, 14231–14238PubMedCrossRefGoogle Scholar
  16. Han, X., and Boyden, E. S. (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE 2, e299PubMedCrossRefGoogle Scholar
  17. Harding C, Heuser J, Stahl P. (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferring receptor in rat reticulocytes. J. Cell Biol. 97, 329–339PubMedCrossRefGoogle Scholar
  18. Huber, D., Petreanu. L., Ghitani, N., Ranade, S., Hromádka, T., Mainen, Z., and Svoboda, K. (2008) Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451, 61–64PubMedCrossRefGoogle Scholar
  19. Karpova, A. Y., Tervo, D. G., Gray, N. W., and Svoboda, K. (2005) Rapid and reversible chemical inactivation of synaptic transmission in genetically targeted neurons. Neuron 48, 727–735PubMedCrossRefGoogle Scholar
  20. Kolbe, M., Besir, H., Essen, L. O., and Oesterhelt, D. (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. Science 288, 1390–1396PubMedCrossRefGoogle Scholar
  21. Lanyi, J. K. (1990) Halorhodopsin, a light-driven electrogenic chloride-transport system. Physiol. Rev. 70, 319–330PubMedGoogle Scholar
  22. Lanyi, J. K., Duschl, A., Hatfield, G. W., May, K., and Oesterhelt, D. (1990) The primary structure of a halorhodopsin from Natronobacterium pharaonis. Structural, functional and evolutionary implications for bacterial rhodopsins and halorhodopsins. J. Biol. Chem. 265, 1253–1260PubMedGoogle Scholar
  23. Lerchner, W., Xiao, C., Nashmi, R., Slimko, E. M., van Trigt, L., Lester, H. A., and Anderson D. J. (2007) Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectingated Cl channel. Neuron 54, 35–49PubMedCrossRefGoogle Scholar
  24. Li, X., Gutierrez, D. V., Hanson, M. G., Han, J., Mark, M. D., Chiel, H., Hegemann, P., Landmesser, L. T., and Herlitze, S. (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 102, 17816–17821PubMedCrossRefGoogle Scholar
  25. Ma D., Zerangue N., Lin Y. F., Collins A., Yu M., Jan Y. N., Jan L. Y. (2001) Role of ER export signals in controlling surface potassium channel numbers. Science 291, 316–319PubMedCrossRefGoogle Scholar
  26. Nagel, G., Brauner, M., Liewald, J. F., Adeishvili, N., Bamberg, E., and Gottschalk, A. (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284PubMedCrossRefGoogle Scholar
  27. Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., and Bamberg, E. (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945PubMedCrossRefGoogle Scholar
  28. Nakamura, N., Rabouille, C., Watson, R., Nilsson, T., Hui, N., Slusarewicz, P., Kreis, T. E., and Warren, G. (1995) Characterization of a cis-Golgi matrix protein, GM130. J. Cell Biol. 131, 1715–1726PubMedCrossRefGoogle Scholar
  29. Petreanu, L., Huber, D., Sobczyk, A., and Svoboda, K. (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668PubMedCrossRefGoogle Scholar
  30. Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Völler, T., Erbguth, K., Gerber, B., Hendel, T., Nagel, G., Buchner, E., and Fiala, A. (2006) Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16, 1741–1747PubMedCrossRefGoogle Scholar
  31. Tan, E. M., Yamaguchi, Y., Horwitz, G. D., Gosgnach, S., Lein, E. S., Goulding, M., Albright, T. D., and Callaway, E. M. (2006) Selective and quickly reversible inactivation of mammalian neurons in vivo using the Drosophila allatostatin receptor. Neuron 51, 157–170PubMedCrossRefGoogle Scholar
  32. Tervo, D., and Karpova, A. Y. (2007) Rapidly inducible, genetically targeted inactivation of neural and synaptic activity in vivo. Curr. Opin. Neurobiol. 17, 581–586PubMedCrossRefGoogle Scholar
  33. Wang, H., Peca, J., Matsuzaki, M., Matsuzaki, K., Noguchi, J., Qiu, L., Wang, D., Zhang, F., Boyden, E., Deisseroth, K., Kasai, H., Hall, W. C., Feng, G., and Augustine, G. J. (2007) High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. USA 104, 8143–8148PubMedCrossRefGoogle Scholar
  34. Wulff, P., Goetz, T., Leppä, E., Linden, A. M., Renzi, M., Swinny, J. D., Vekovischeva, O. Y., Sieghart, W., Somogyi, P., Korpi, E. R., Farrant, M., and Wisden, W. (2007) From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat. Neurosci. 10, 923–929PubMedCrossRefGoogle Scholar
  35. Zhang, F., Aravanis, A. M., Adamantidis, A., de Lecea, L., and Deisseroth, K. (2007b) Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8, 577–581PubMedCrossRefGoogle Scholar
  36. Zhang, Y. P., and Oertner, T. G. (2007) Optical induction of synaptic plasticity using a light-sensitive channel. Nat. Methods 4, 139–141PubMedCrossRefGoogle Scholar
  37. Zhang, F., Prigge, M., Beyrière, F., Tsunoda, S. P., Mattis, J., Yizhar, O., Hegemann, P., and Deisseroth, K. (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631–633PubMedCrossRefGoogle Scholar
  38. Zhang F., Wang, L.P., Boyden E.S., and Deisseroth K. (2006). Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3, 785–792PubMedCrossRefGoogle Scholar
  39. Zhang, F., Wang, L. P., Brauner, M., Liewald, J. F., Kay, K., Watzke, N., Wood, P. G., Bamberg, E., Nagel, G., Gottschalk, A., and Deisseroth K. (2007a) Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Shengli Zhao
    • 1
  • Catarina Cunha
    • 1
    • 2
  • Feng Zhang
    • 3
  • Qun Liu
    • 4
  • Bernd Gloss
    • 4
  • Karl Deisseroth
    • 3
  • George J. Augustine
    • 1
  • Guoping Feng
    • 1
    • 4
  1. 1.Department of NeurobiologyDuke University Medical CenterDurhamUSA
  2. 2.Faculdade de Ciências da Universidade do PortoPortoPortugal
  3. 3.Department of BioengineeringStanford UniversityStanfordUSA
  4. 4.Duke Neurotransgenic LaboratoryDuke University Medical CenterDurhamUSA

Personalised recommendations