Brain Cell Biology

, Volume 35, Issue 4–6, pp 267–281 | Cite as

Differential activation of extracellular signal-regulated kinase 1 and a related complex in neuronal nuclei



The extracellular signal-regulated kinases 1 and 2 (ERKs 1/2) are known to participate in regulating transcription in response to moderate depolarization, such as synaptic stimulation, but how the same active enzyme can differentially regulate distinct transcriptional programs induced with abnormal depolarization (high potassium) is unknown. We hypothesized that ERK1 or 2 accomplishes this differential nuclear response through close association with other proteins in stable complexes. In support of this hypothesis, we have found that immunoreactivity for an apparent high molecular weight complex containing phospho-ERK1 increased in response to synaptic stimulation, but decreased in response to high potassium; p-ERK immunoreactivity at 44/42 kDa increased in both cases. Evidence supporting the conclusion that the band of interest contained ERK1 in a complex, as opposed to it being an unrelated protein crossreacting with antibodies against p-ERK, is that ERK1 (p44 MAPK) and 14-3-3 protein were electroeluted from the 160-kDa band cut from a gel. We also found the nuclear complexes to be exceptionally durable, suggesting a role for the crosslinking enzyme, transglutaminase, in its stabilization. In addition, we found other components of the ERK pathway, including MEK, ERK2, p90RSK, and Elk-1, migrating at higher-than-expected weights in brain nuclei. These results describe a novel stable complex of ERK1 in neuronal nuclei that responds differentially to synaptic and depolarizing stimulation, and thus may be capable of mediating gene transcription in a way distinct from the monomeric protein.



We thank J. Paige Adams and Rachel Robinson for some of the Western blots and Negin Martin, Marc Sommer, and Mariel Birnbaumer for critical reading of the manuscript. This research was supported by the Intramural Research Program of the National Institutes of Health and the National Institute of Environmental Health Sciences.


  1. Adachi, M., Fukuda, M., Nishida, E. (2000). Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J. Cell Biol. 148, 849–856PubMedCrossRefGoogle Scholar
  2. Adams, J. P., Dudek, S. M. (2005). Late-phase long-term potentiation: Getting to the nucleus. Nat. Rev. Neurosci. 6, 737–743PubMedCrossRefGoogle Scholar
  3. Bading, H., Greenberg, M. E. (1991). Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253, 912–914PubMedCrossRefGoogle Scholar
  4. Baron, C., Benes, C., Tan, H. V., Fagard, R., Roisin, M.-P. (1996). Potassium chloride pulse enhances mitogen-activated protein kinase activity in rat hippocampal slices. J. Neurochem. 66, 1005–1010PubMedCrossRefGoogle Scholar
  5. Bito, H., Deisseroth, K., Tsien, R. W. (1996). CREB phosphorylation and dephosphorylation: A Ca2(+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214PubMedCrossRefGoogle Scholar
  6. Blum, S., Moore, A. N., Adams, F., Dash, P. K. (1999). A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J. Neurosci. 19, 3535–3544PubMedGoogle Scholar
  7. Brewer, G. J., Torricelli, J. R., Evege, E. K., Price, P. J. (1993). Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576PubMedCrossRefGoogle Scholar
  8. Case, A., Stein, R. L. (2003). Kinetic analysis of the action of tissue transglutaminase on peptide and protein substrates. Biochemistry 42, 9466–9481PubMedCrossRefGoogle Scholar
  9. Chen, R.-H., Sarnecki, C., Blenis, J. (1992). Nuclear localization and regulation of ERK- and RSK-encoded protein kinases. Mol. Cell Biol. 12, 915–927PubMedGoogle Scholar
  10. Choudhuri, R., Cui, L., Yong, C., Bowyer, S., Klein, R. M., Welch, K. M., Berman, N. E. (2002). Cortical spreading depression and gene regulation: Relevance to migraine. Ann. Neurol. 51, 499–506PubMedCrossRefGoogle Scholar
  11. Davare, M. A., Saneyoshi, T., Guire, E. S., Nygaard, S. C., Soderling, T. R. (2004). Inhibition of calcium/calmodulin-dependent protein kinase kinase by protein 14-3-3. J. Biol. Chem. 279, 52191–52199PubMedCrossRefGoogle Scholar
  12. Dudek, S. M., Fields, R. D. (2001). Mitogen-activated protein kinase/extracellular signal-regulated kinase activation in somatodendritic compartments: Roles of action potentials, frequency, and mode of calcium entry. J. Neurosci. 21, RC122PubMedGoogle Scholar
  13. Edmunds, J. W., Mahadevan, L. C. (2004). MAP kinases as structural adaptors and enzymatic activators in transcriptional complexes. J. Cell Sci. 117, 3715–3723PubMedCrossRefGoogle Scholar
  14. English, J. D., Sweatt, J. D. (1996). Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem. 271, 24329–24332PubMedCrossRefGoogle Scholar
  15. Ferrell, J. E. J. (2000). What do scaffold proteins really do? Sci. STKE 2000, PE1Google Scholar
  16. Freed, E., Symons, M., Macdonald, S. G., McCormick, F., Ruggieri, R. (1994). Binding of 14-3-3 proteins to the protein kinase raf and effects on its activation. Science 265, 1713–1716PubMedCrossRefGoogle Scholar
  17. Fukuda, M., Gotoh, I., Gotoh, Y., Nishida, E. (1996). Cytoplasmic localization of MAP kinase kinase directed by its N-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export sequence. J. Biol. Chem. 271, 20024–20028PubMedCrossRefGoogle Scholar
  18. Grootjans, J. J., Groenen, P. J., de Jong, W. W. (1995). Substrate requirements for transglutaminases. Influence of the amino acid residue preceding the amine donor lysine in a native protein. J. Biol. Chem. 270, 22855–22858PubMedCrossRefGoogle Scholar
  19. Guzowski, J. F., McNaughton, B. L., Barnes, C. A., Worley, P. F. (1999). Environment-specific expression of the immediate-early gene arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124PubMedCrossRefGoogle Scholar
  20. Hardingham, G. E., Arnold, F. J. L., Bading, H. (2001). Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat. Neurosci. 4, 261–267PubMedCrossRefGoogle Scholar
  21. Horgan, A. M., Stork, P. J. (2003). Examining the mechanism of ERK nuclear translocation using green fluorescent protein. Exp. Cell Res. 285, 208–220PubMedCrossRefGoogle Scholar
  22. Impey, S., Obrietan, K., Wong, S. T., Poser, S., Yano, S., Wayman, G., Deloulme, J. C., Chan, G., Storm, D. R. (1998). Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21, 869–883PubMedCrossRefGoogle Scholar
  23. Irie, K., Gotoh, Y., Yashar, B. M., Errede, B., Nishida, E., Matsumoto, K. (1994). Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf protein kinase. Science 265, 1716–1719PubMedCrossRefGoogle Scholar
  24. Johnson, G. V., Cox, T. M., Lockhart, J. P., Zinnerman, M. D., Miller, M. L., Powers, R. E. (1997). Transglutaminase activity is increased in Alzheimer’s disease brain. Brain Res. 751, 323–329PubMedCrossRefGoogle Scholar
  25. Johnson, G. V., LeShoure, R. J. (2004). Immunoblot analysis reveals that isopeptide antibodies do not specifically recognize the epsilon-(gamma-glutamyl)lysine bonds formed by transglutaminase activity. J. Neurosci. Meth. 134, 151–158CrossRefGoogle Scholar
  26. Karlsson, M., Mathers, J., Dickinson, R. J., Mandl, M., Keyse, S. M. (2004). Both nuclear-cytoplasmic shuttling of the dual specificity phosphatase MKP-3 and its ability to anchor MAP kinase in the cytoplasm are mediated by a conserved nuclear export signal. J. Biol. Chem. 279, 41882–41891PubMedCrossRefGoogle Scholar
  27. Kolch, W. (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 6, 827–837PubMedCrossRefGoogle Scholar
  28. Lenormand, P., Brondello, J.-M., Brunet, A., Pouyssegur, J. (1998). Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J. Cell Biol. 142, 625–633PubMedCrossRefGoogle Scholar
  29. Lesort, M., Attanavanich, K., Zhang, J., Johnson, G. V. (1998). Distinct nuclear localization and activity of tissue transglutaminase. J. Biol. Chem. 273, 11991–11994PubMedCrossRefGoogle Scholar
  30. Lorand, L., Graham, R. M. (2003). Transglutaminases: Crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4, 140–156PubMedCrossRefGoogle Scholar
  31. Maggio, N., Sellitti, S., Capano, C. P., Papa, M. (2001). Tissue-transglutaminase in rat and human brain: Light and electron immunocytochemical analysis and in situ hybridization study. Brain Res. Bull. 56, 173–182PubMedCrossRefGoogle Scholar
  32. Martin, H., Flandez, M., Nombela, C., Molina, M. (2005). Protein phosphatases in MAPK signalling: We keep learning from yeast. Mol. Microbiol. 58, 6–16PubMedCrossRefGoogle Scholar
  33. Milakovic, T., Tucholski, J., McCoy, E., Johnson, G. V. W. (2004). Intracellular localization and activity state of tissue transglutaminase differentially impacts cell death. J. Biol. Chem. 279, 8715–8722PubMedCrossRefGoogle Scholar
  34. Nedivi, E., Hevroni, D., Naot, D., Israeli, D., Citri, Y. (1993). Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 363, 718–722PubMedCrossRefGoogle Scholar
  35. Nunomura, K., Kawakami, S., Shimizu, K., Hara, T., Nakamura, K., Terakawa, Y., Yamasaki, A., Ikegami, S. (2003). In vivo cross-linking of nucleosomal histones catalyzed by nuclear transglutaminase in starfish sperm and its induction by egg jelly triggering the acrosome reaction. Eur. J. Biochem. 270, 3750–3759PubMedCrossRefGoogle Scholar
  36. Obsil, T., Ghirlando, R., Klein, D. C., Ganguly, S., Dyda, F. (2001). Crystal structure of the 14-3-3zeta:Serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation. Cell 105, 257–267PubMedCrossRefGoogle Scholar
  37. Patterson, S. L., Pittenger, C., Morozov, A., Martin, K. C., Scanlin, H., Drake, C., Kandel, E. R. (2001) Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron 32, 123–140PubMedCrossRefGoogle Scholar
  38. Peng, X., Zhang, Y., Zhang, H., Graner, S., Williams, J. F., Levitt, M. L., Lokshin, A. (1999). Interaction of tissue transglutaminase with nuclear transport protein importin-alpha3. FEBS Lett. 446, 35–39PubMedCrossRefGoogle Scholar
  39. Philipova, R., Whitaker, M. (2005). Active ERK1 is dimerized in vivo: Biphosphodimers generate peak kinase activity and monophosphodimer maintain basal ERK1 activity. J. Cell Sci. 118, 5767–5776PubMedCrossRefGoogle Scholar
  40. Rosenblum, K., Futter, M., Voss, K., Erent, M., Skehel, P. A., French, P., Obosi, L., Jones, M. W., Bliss, T. V. (2002). The role of extracellular regulated kinases I/II in late-phase long-term potentiation. J. Neurosci. 22, 5432–5411PubMedGoogle Scholar
  41. Sala, C., Rudolph-Correia, S., Sheng, M. (2000). Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. J. Neurosci. 20, 3529–3536PubMedGoogle Scholar
  42. Sanchez-del-Rio, M., Reuter, U. (2004). Migraine aura: New information on underlying mechanisms. Curr. Opin. Neurol. 17, 289–293PubMedCrossRefGoogle Scholar
  43. Sano, M., Kohno, M., Iwanaga, M. (1995). The activation and nuclear translocation of extracellular signal-regulated kinases (ERK-1 and -2) appear not to be required for elongation of neurites in PC12d cells. Brain Res. 688, 213–218PubMedCrossRefGoogle Scholar
  44. Segal, R. A., Greenberg, M. E. (1996). Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19, 463–489PubMedGoogle Scholar
  45. Shimizu, K., Kuroda, S., Yamamori, B., Matsuda, S., Kaibuchi, K., Yamauchi, T., Isobe, T., Irie, K., Matsumoto, K., Takai, Y. (1994). Synergistic activation by Ras and 14-3-3 protein of a mitogen-activated protein kinase kinase kinase named Ras-dependent extracellular signal-regulated kinase kinase stimulator. J. Biol. Chem. 269, 22917–22920PubMedGoogle Scholar
  46. Thiels, E., Kanterewicz, B. I., Norman, E. D., Trzaskos, J. M., Klann, E. (2002). Long-term depression in the adult hippocampus in vivo involves activation of extracellular signal-regulated kinase and phosphorylation of ELK-1. J. Neurosci. 22, 2054–2062PubMedGoogle Scholar
  47. Traverse, S., Gomez, N., Paterson, H., Marshall, C., Cohen, P. (1992). Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J. 288, 351–355PubMedGoogle Scholar
  48. Van Der Hoeven, P. C., Van Der Wal, J. C., Ruurs, P., Van Blitterswijk, W. J. (2000). Protein kinase C activation by acidic proteins including 14-3-3. Biochem. J. 347, 781–785CrossRefGoogle Scholar
  49. Waltereit, R., Dammermann, B., Wulff, P., Scafidi, J., Staubli, U., Kauselmann, G., Bundman, M., Kuhl, D. (2001). Arg3.1/arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J. Neurosci. 21, 5484–5493PubMedGoogle Scholar
  50. Whitmarsh, A. J., Davis, R. J. (1998). Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem. Sci. 23, 481–485PubMedCrossRefGoogle Scholar
  51. Wu, G. Y., Deisseroth, K., Tsien, R. W. (2001). Activity-dependent CREB phosphorylation: Convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 98, 2808–2813PubMedCrossRefGoogle Scholar
  52. Yamamori, B., Kuroda, S., Shimizu, K., Fukui, K., Ohtsuka, T., Takai, Y. (1995). Purification of a Ras-dependent mitogen-activated protein kinase kinase kinase from bovine brain cytosol and its identification as a complex of b-Raf and 14-3-3 proteins. J. Biol. Chem. 270, 11723–11726PubMedCrossRefGoogle Scholar
  53. Zhao, M., Adams, J. P., Dudek, S. M. (2005). Pattern-dependent role of NMDA receptors in action potential generation: Consequences on extracellular signal-regulated kinase activation. J. Neurosci. 25, 7032–7039PubMedCrossRefGoogle Scholar
  54. Zhao, Y., Bjorbaek, C., Weremowicz, S., Morton, C. C., Moller, D. E. (1995). Rsk3 encodes a novel pp90rsk isoform with a unique N-terminal sequence: Growth factor-stimulated kinase function and nuclear translocation. Mol. Cell Biol. 15, 4353–4363PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  1. 1.National Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkUSA

Personalised recommendations