Journal of Neurocytology

, Volume 34, Issue 6, pp 369–385 | Cite as

The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord



Calcium binding proteins (CBPs) regulate intracellular levels of calcium (Ca2+) ions. CBPs are particularly interesting from a morphological standpoint, because they are differentially expressed in certain sub-populations of cells in the nervous system of various species of vertebrate animals. However, knowledge on the cellular regulation governing such cell-specific CBP expression is still incomplete. In this work on the L7 segment of the cat spinal cord, we analyzed the localization and morphology of neurons expressing the CBPs calbindin-28 KD (CB), parvalbumin (PV), and calretinin (CR), and co-expressing CB and PV, CB and CR, and PV and CR. Single CBP-positive (+) neurons showed specific distributions: (1) CB was present in small neurons localized in laminae I, II, III and X, in small to medium size neurons in laminae III–VI, and in medium to large neurons in laminae VI–VIII; (2) PV was present in small size neurons in laminae III and IV and in medial portions of laminae V and VI, medium neurons and in lamina X at the border with lamina VII, in medium to large neurons in laminae VII and VIII; (3) CR labeling was detected in small size neurons in laminae I, II, III and VIII, in medium to large size neurons in laminae I and III–VII, and in small to medium size neurons in lamina X. Double labeled neurons were a small minority of the CBP+ cells. Co-expression of CB and PV was seen in 1 to 2% of the CBP+ cells, and they were detected in the ventral and intermediate portions of lamina VII and in lamina X. Co-localization of CB and CR was present in 0.3% of the cells and these cells were localized in lamina II. Double labeling for PV and CR occurred in 6% of the cells, and the cells were localized in ventral part of lamina VII and in lamina VIII. Overall, these results revealed distinct and reproducible patterns of localization of the neurons expressing single CBPs and co-expressing two of them. Distinct differences of CBP expression between cat and other species are discussed. Possible relations between the cat L7 neurons expressing different CBPs with the neurons previously analyzed in cat and other animals are suggested.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALVAREZ., F. J., DEWEY, D. E, HARRINGTON, D. A. & FYFFE, R. E. (1997) Cell-type specific organization of glycine receptor clusters in the mammalian spinal cord. Journal of Comparative Neurology 379, 150–170.PubMedCrossRefGoogle Scholar
  2. ALVAREZ, F. J., DEWEY, D. E., MCMILLIN, P. & FYFFE, R. E. (1999) Distribution of cholinergic contacts on Renshaw cells in the rat spinal cord: A light microscopic study. Journal of Physiology 515, 787–797.PubMedCrossRefGoogle Scholar
  3. ANDRESSEN, C., BLUMCKE, I. & CELIO, M. R. (1993) Calcium-binding proteins: Selective markers of nerve cells. Cell and Tissue Research 271, 181–208.PubMedCrossRefGoogle Scholar
  4. ANELLI, R., DUNN, M. E. & MUGNAINI, E. (2000) Unipolar brush cells develop a set of characteristic features in primary cerebellar cultures. Journal of Neurocytology 29, 129–144.PubMedCrossRefGoogle Scholar
  5. ANELLI, R. & MUGNAINI, E. (2001) Enrichment of unipolar brush cell-like neurons in primary rat cerebellar cultures. Anatomy and Embryology (Berl) 203, 283–292.CrossRefGoogle Scholar
  6. ANTAL, M., FREUND, T. F. & POLGAR, E. (1990) Calcium-binding proteins, parvalbumin- and calbindin-D 28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: A light and electron microscopic study. Journal of Comparative Neurology 295, 467–484.PubMedCrossRefGoogle Scholar
  7. ANTAL, M., POLGAR, E., CHALMERS, J., MINSON, J. B., LLEWELLYN-SMITH, I., HEIZMANN, C. W. & SOMOGYI, P. (1991) Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal horn of the rat spinal cord. Journal of Comparative Neurology 314, 114–124.PubMedCrossRefGoogle Scholar
  8. AOKI, E., SEMBA, R., SETO-OHSHIMA, A., HEIZMANN, C. W. & KASHIWAMATA, S. (1990) Coexistence of parvalbumin and glycine in the rat brainstem. Brain Research 525, 140–143.PubMedCrossRefGoogle Scholar
  9. ARMSTRONG, D. M. & SCHILD, R. F. (1979) Spino-olivary neurones in the lumbo-sacral cord of the cat demonstrated by retrograde transport of horseradish peroxidase. Brain Research 168, 176–179.PubMedCrossRefGoogle Scholar
  10. ARVANITOGIANNIS, A., ROBINSON, B., BEAULE, C. & AMIR, S. (2000) Calbindin-D28k immunoreactivity in the suprachiasmatic nucleus and the circadian response to constant light in the rat. Neuroscience 99, 397–401.PubMedCrossRefGoogle Scholar
  11. ARVIDSSON, U., ULFHAKE, B., CULLHEIM, S., RAMIREZ, V., SHUPLIAKOV, O. & HOKFELT, T. (1992) Distribution of calbindin D28k-like immunoreactivity (LI) in the monkey ventral horn: Do Renshaw cells contain calbindin D28k-LI? Journal of Neuroscience 12, 718–728.PubMedGoogle Scholar
  12. BAIMBRIDGE, K. G., CELIO, M. R. & ROGERS, J. H. (1992) Calcium-binding proteins in the nervous system. Trends in Neuroscience 15, 303–308.CrossRefGoogle Scholar
  13. BARAKAT-WALTER, I., KRAFTSIK, R., KUNTZER, T., BOGOUSSLAVSKY, J. & MAGISTRETTI, P. (2000) Differential effect of thyroid hormone deficiency on the growth of calretinin-expressing neurons in rat spinal cord and dorsal root ganglia. Journal of Comparative Neurology 426, 519–533.PubMedCrossRefGoogle Scholar
  14. BRAS, H., CAVALLARI, P., JANKOWSKA, E. & KUBIN, L. (1989) Morphology of midlumbar interneurones relaying information from group II muscle afferents in the cat spinal cord. Journal of Comparative Neurology 290, 1–15.PubMedCrossRefGoogle Scholar
  15. CAO, C. Q., DJOUHRI, L. & BROWN, A. G. (1993) Lumbosacral spinal neurons in the cat that are candidates for being activated by collaterals from the spinocervical tract. Neuroscience 57, 153–165.PubMedCrossRefGoogle Scholar
  16. CARR, P. A., ALVAREZ, F. J., LEMAN, E. A. & FYFFE, R. E. (1998) Calbindin D28k expression in immunohistochemically identified Renshaw cells. Neuroreport 9, 2657–2661.PubMedCrossRefGoogle Scholar
  17. CARSTENS, E. & TREVINO, D. L. (1978) Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 182, 161–165.PubMedGoogle Scholar
  18. CELIO, M. R. (1986) Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231, 995–997.PubMedGoogle Scholar
  19. CLOWRY, G. J., ARNOTT, G. A., CLEMENT-JONES, M., FALLAH, Z., GOULD, S. & WRIGHT, C. (2000) Changing pattern of expression of parvalbumin immunoreactivity during human fetal spinal cord development. Journal of Comparative Neurology 423, 727–735.PubMedCrossRefGoogle Scholar
  20. CZARKOWSKA, J., JANKOWSKA, E. & SYBIRSKA, E. (1981) Common interneurones in reflex pathways from group 1a and 1b afferents of knee flexors and extensors in the cat. Journal of Physiology 310, 367–380.PubMedGoogle Scholar
  21. EDGLEY, S. A. (2001) Organisation of inputs to spinal interneurone populations. Journal of Physiology 533, 51–56.PubMedCrossRefGoogle Scholar
  22. ENEVOLDSON, T. P. & GORDON, G. (1989) Postsynaptic dorsal column neurons in the cat: A study with retrograde transport of horseradish peroxidase. Experimental Brain Research 75, 611–620.Google Scholar
  23. ERTEL, S. I. & ERTEL, E. A. (1997) Low-voltage-activated T-type Ca2+ channels. Trends in Pharmacogical Sciences 18, 37–42.CrossRefGoogle Scholar
  24. FIELDS, H. L., CLANTON, C. H. & ANDERSON, S. D. (1977) Somatosensory properties of spinoreticular neurons in the cat. Brain Research 120, 49–66.PubMedCrossRefGoogle Scholar
  25. FOURNET, N., GARCIA-SEGURA, L. M., NORMAN, A. W. & ORCI, L. (1986) Selective localization of calcium-binding protein in human brainstem, cerebellum and spinal cord. Brain Research 399, 310–316.PubMedCrossRefGoogle Scholar
  26. FYFFE, R. E. (1990) Evidence for separate morphological classes of Renshaw cells in the cat's spinal cord. Brain Research 536, 301–304.PubMedCrossRefGoogle Scholar
  27. GALHARDO, V. & LIMA, D. (1999) Structural characterization of marginal (lamina I) spinal cord neurons in the cat: AA Golgi study. Journal of Comparative Neurology 414, 315–333.PubMedCrossRefGoogle Scholar
  28. GEIMAN, E. J., KNOX, M. C. & ALVAREZ, F. J. (2000) Postnatal maturation of gephyrin/glycine receptor clusters on developing Renshaw cells. Journal of Comparative Neurology 426, 130–142.PubMedCrossRefGoogle Scholar
  29. GEIMAN, E. J., ZHENG, W., FRITSCHY, J. M. & ALVAREZ, F. J. (2002) Glycine and GABA(A) receptor subunits on Renshaw cells: Relationship with presynaptic neurotransmitters and postsynaptic gephyrin clusters. Journal of Comparative Neurology 444, 275–289.PubMedCrossRefGoogle Scholar
  30. GRANT, G., WIKSTEN, B., BERKLEY, K. J. & ALDSKOGIUS, H. (1982) The location of cerebellar-projecting neurons within the lumbosacral spinal cord in the cat. An anatomical study with HRP and retrograde chromatolysis. Journal of Comparative Neurology 204, 336–348.PubMedCrossRefGoogle Scholar
  31. GUGLIELMONE, R. & CORVETTI, G. (2000) First appearance and distribution of calretinin-immunoreactive neurons in the early development of the chick central nervous system. Cell Tissue Research 300, 21–28.PubMedGoogle Scholar
  32. HAN, Z. S., ZHANG, E. T. & CRAIG, A. D. (1998) Nociceptive and thermoreceptive lamina I neurons are anatomically distinct. Nature Neuroscience 1, 218–225.PubMedCrossRefGoogle Scholar
  33. HARRISON, P. J., JANKOWSKA, E. & ZYTNICKI, D. (1986) Lamina VIII interneurones interposed in crossed reflex pathways in the cat. Journal of Physiology 371, 147–166.PubMedGoogle Scholar
  34. HEIZMANN, C. W. & BRAUN, K. (1992) Changes in Ca(2+)-binding proteins in human neurodegenerative disorders. Trends in Neuroscience 15, 259–264.CrossRefGoogle Scholar
  35. HONGO, T., JANKOWSKA, E., OHNO, T., SASAKI, S., YAMASHITA, M. & YOSHIDA, K. (1983) Inhibition of dorsal spinocerebellar tract cells by interneurones in upper and lower lumbar segments in the cat. Journal of Physiology 342, 145–159.PubMedGoogle Scholar
  36. HOOVER, J. E. & DURKOVIC, R. G. (1992) Retrograde labeling of lumbosacral interneurons following injections of red and green fluorescent microspheres into hindlimb motor nuclei of the cat. Somatosensory Motor Research 9, 211–226.PubMedGoogle Scholar
  37. HUANG, A., NOGA, B. R., CARR, P. A., FEDIRCHUK, B. & JORDAN, L. M. (2000) Spinal cholinergic neurons activated during locomotion: Localization and electrophysiological characterization. Journal of Neurophysiology 83, 3537–3547.PubMedGoogle Scholar
  38. HULTBORN, H., JANKOWSKA, E. & LINDSTROM, S. (1971) Recurrent inhibition of interneurones monosynaptically activated from group Ia afferents. Journal of Physiology 215, 613–636.PubMedGoogle Scholar
  39. INCE, P., STOUT, N., SHAW, P., SLADE, J., HUNZIKER, W., HEIZMANN, C. W. & BAIMBRIDGE, K. G. (1993) Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathology and Applied Neurobiology 19, 291–299.PubMedGoogle Scholar
  40. JANKOWSKA, E. & LINDSTROM, S. (1972) Morphology of interneurones mediating Ia reciprocal inhibition of motoneurones in the spinal cord of the cat. Journal of Physiology 226, 805–823.PubMedGoogle Scholar
  41. JANKOWSKA, E. (1992) Interneuronal relay in spinal pathways from proprioceptors. Progress in Neurobiology 38, 335–378.PubMedCrossRefGoogle Scholar
  42. JANKOWSKA, E., RIDDELL, J. S., SZABO-LACKBERG, Z. & HAMMAR, I. (1993) Morphology of interneurones in pathways from group II muscle afferents in sacral segments of the cat spinal cord. Journal of Comparative Neurology 337, 518–528.PubMedCrossRefGoogle Scholar
  43. JANKOWSKA, E. & RIDDELL, J. S. (1994) Interneurones in pathways from group II muscle afferents in sacral segments of the feline spinal cord. Journal of Physiology 475, 455–468.PubMedGoogle Scholar
  44. JANKOWSKA, E. (2001) Spinal interneuronal systems: Identification, multifunctional character and reconfigurations in mammals. Journal of Physiology 533, 31–40.PubMedCrossRefGoogle Scholar
  45. JO, Y. H., STOECKEL, M. E. & SCHLICHTER, R. (1998) Electrophysiological properties of cultured neonatal rat dorsal horn neurons containing GABA and met-enkephalin-like immunoreactivity. Journal of Neurophysiology 79, 1583–1586.PubMedGoogle Scholar
  46. KAWAGUCHI, Y., KATSUMARU, H., KOSAKA, T., HEIZMANN, C. W. & HAMA, K. (1987) Fast spiking cells in rat hippocampus (CA1 region) contain the calcium- binding protein parvalbumin. Brain Research 416, 369–374.PubMedCrossRefGoogle Scholar
  47. KNIRSCH, U., STURM, S., REUTER, A., BACHUS, R., GOSZTONYI, G., VOELKEL, H. & LUDOLPH, A. C. (2001) Calcineurin A and calbindin immunoreactivity in the spinal cord of G93A superoxide dismutase transgenic mice. Brain Research 889, 234–238.PubMedCrossRefGoogle Scholar
  48. KUZE, B., MATSUYAMA, K., MATSUI, T., MIYATA, H. & MORI, S. (1999) Segment-specific branching patterns of single vestibulospinal tract axons arising from the lateral vestibular nucleus in the cat: A PHA-L tracing study. Journal of Comparative Neurology 414, 80–96.PubMedCrossRefGoogle Scholar
  49. LEE, R. H. & HECKMAN, C. J. (1998a) Bistability in spinal motoneurons in vivo: Systematic variations in persistent inward currents. Journal of Neurophysiology 80, 583–593.Google Scholar
  50. LEE, R. H. & HECKMAN, C. J. (1998b) Bistability in spinal motoneurons in vivo: systematic variations in rhythmic firing patterns. Journal of Neurophysiology 80, 572–582.Google Scholar
  51. LEE, R. H. & HECKMAN, C. J. (2000) Adjustable amplification of synaptic input in the dendrites of spinal motoneurons in vivo. Journal of Neuroscience 20, 6734–6740.PubMedGoogle Scholar
  52. LEE, R. H. & HECKMAN, C. J. (2001) Essential role of a fast persistent inward current in action potential initiation and control of rhythmic firing. Journal of Neurophysiology 85, 472–475.PubMedGoogle Scholar
  53. LEE, S. H., ROSENMUND, C., SCHWALLER, B. & NEHER, E. (2000) Differences in Ca2+ buffering properties between excitatory and inhibitory hippocampal neurons from the rat. Journal of Physiology 525 Pt 2, 405–418.PubMedCrossRefGoogle Scholar
  54. LIMA, D. & COIMBRA, A. (1990). Structural types of marginal (lamina I) neurons projecting to the dorsal reticular nucleus of the medulla oblongata. Neuroscience 34, 591–606.PubMedCrossRefGoogle Scholar
  55. LIMA, D., AVELINO, A. & COIMBRA, A. (1993) Morphological characterization of marginal (lamina I) neurons immunoreactive for substance P, enkephalin, dynorphin and gamma-aminobutyric acid in the rat spinal cord. Journal of Chemical Neuroanatomy 6, 43–52.PubMedCrossRefGoogle Scholar
  56. MALER, L., JANDE, S. & LAWSON, E. M. (1984) Localization of vitamin D-dependent calcium binding protein in the electrosensory and electromotor system of high frequency gymnotid fish. Brain Research 301, 166–170.PubMedCrossRefGoogle Scholar
  57. MARTINA, M., SCHULTZ, J. H., EHMKE, H., MONYER, H. & JONAS, P. (1998) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. Journal of Neuroscience 18, 8111–8125.PubMedGoogle Scholar
  58. MAUNZ, R. A., PITTS, N. G. & PETERSON, B. W. (1978) Cat spinoreticular neurons: Locations, responses and changes in responses during repetitive stimulation. Brain Research 148, 365–379.PubMedCrossRefGoogle Scholar
  59. MAXWELL, D. J., KERR, R., JANKOWSKA, E. & RIDDELL, J. S. (1997) Synaptic connections of dorsal horn group II spinal interneurons: synapses formed with the interneurons and by their axon collaterals. Journal of Comparative Neurology 380, 51–69.PubMedCrossRefGoogle Scholar
  60. MENETREY, D., ROUDIER, F. & BESSON, J. M. (1983) Spinal neurons reaching the lateral reticular nucleus as studied in the rat by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 220, 439–452.PubMedCrossRefGoogle Scholar
  61. MENETREY, D. & BASBAUM, A. I. (1987) Spinal and trigeminal projections to the nucleus of the solitary tract: A possible substrate for somatovisceral and viscerovisceral reflex activation. Journal of Comparative Neurology 255, 439–450.PubMedCrossRefGoogle Scholar
  62. MENETREY, D., DE POMMERY, J., THOMASSET, M. & BAIMBRIDGE, K. G. (1992) Calbindin-D28K (CaBP28k)-like Immunoreactivity in Ascending Projections. European Journal of Neuroscience 4, 70–76.PubMedCrossRefGoogle Scholar
  63. MEYERS, D. E. & SNOW, P. J. (1982) The morphology of physiologically identified deep spinothalamic tract cells in the lumbar spinal cord of the cat. Journal of Physiology 329, 373–388.PubMedGoogle Scholar
  64. MOSCHOVAKIS, A. K., SOLODKIN, M. & BURKE, R. E. (1992) Anatomical and physiological study of interneurons in an oligosynaptic cutaneous reflex pathway in the cat hindlimb. Brain Research 586, 311–318.PubMedCrossRefGoogle Scholar
  65. MOUTON, L. J. & HOLSTEGE, G. (1994) The periaqueductal gray in the cat projects to lamina VIII and the medial part of lamina VII throughout the length of the spinal cord. Experimental Brain Research 101, 253–264.CrossRefGoogle Scholar
  66. MOUTON, L. J. & HOLSTEGE, G. (1998) Three times as many lamina I neurons project to the periaqueductal gray than to the thalamus: A retrograde tracing study in the cat. Neuroscience Letters 255, 107–110.PubMedCrossRefGoogle Scholar
  67. NAHIN, R. L., MADSEN, A. M. & GIESLER, G. J., JR. (1983) Anatomical and physiological studies of the gray matter surrounding the spinal cord central canal. Journal of Comparative Neurology 220, 321–335.PubMedCrossRefGoogle Scholar
  68. NOGA, B. R., KETTLER, J. & JORDAN, L. M. (1988) Locomotion produced in mesencephalic cats by injections of putative transmitter substances and antagonists into the medial reticular formation and the pontomedullary locomotor strip. Journal of Neuroscience 8, 2074–2086.PubMedGoogle Scholar
  69. NOGA, B. R., FORTIER, P. A., KRIELLAARS, D. J., DAI, X., DETILLIEUX, G. R. & JORDAN, L. M. (1995) Field potential mapping of neurons in the lumbar spinal cord activated following stimulation of the mesencephalic locomotor region. Journal of Neuroscience 15, 2203–2217.PubMedGoogle Scholar
  70. PEZET, S., ONT NIENTE, B., GRANNEC, G. & CALVINO, B. (1999) Chronic pain is associated with increased TrkA immunoreactivity in spinoreticular neurons. Journal of Neuroscience 19, 5482–5492.PubMedGoogle Scholar
  71. POPPELE, R. E., BOSCO, G. & RANKIN, A. M. (2002) Independent representations of limb axis length and orientation in spinocerebellar response components. Journal of Neurophysiology 87, 409–422.PubMedGoogle Scholar
  72. PRESCOTT, S. A. & KONINCK, Y. D. (2002) Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat. Journal of Physiology 539, 817–836.PubMedCrossRefGoogle Scholar
  73. PUSKAR, Z. & ANTAL, M. (1997) Localization of last-order premotor interneurons in the lumbar spinal cord of rats. Journal of Comparative Neurology 389, 377–389.PubMedCrossRefGoogle Scholar
  74. RABOISSON, P., DALLEL, R., BERNARD, J. F., LE BARS, D. & VILLANUEVA, L. (1996) Organization of efferent projections from the spinal cervical enlargement to the medullary subnucleus reticularis dorsalis and the adjacent cuneate nucleus: a PHA-L study in the rat. Journal of Comparative Neurology 367, 503–517.PubMedCrossRefGoogle Scholar
  75. RASTAD, J., JANKOWSKA, E. & WESTMAN, J. (1977) Arborization of initial axon collaterals of spinocervical tract cells stained intracellularly with horseradish peroxidase. Brain Research 135, 1–10.PubMedCrossRefGoogle Scholar
  76. RASTAD, J., GAD, P., JANKOWSKA, E., MCCREA, D. & WESTMAN, J. (1990) Light microscopical study of dendrites and perikarya of interneurones mediating la reciprocal inhibition of cat lumbar alpha-motoneurones. Anatomy and Embryology 181, 381–388.PubMedCrossRefGoogle Scholar
  77. REN, K. & RUDA, M. A. (1994) A comparative study of the calcium-binding proteins calbindin-D28K, calretinin, calmodulin and parvalbumin in the rat spinal cord. Brain Research 19, 163–179.CrossRefGoogle Scholar
  78. REXED, B. (1952) The cytoarchitectonic organization of the spinal cord in the cat. Journal of Comparative Neurology 96, 415–466.CrossRefGoogle Scholar
  79. REYNOLDS, G. P. & BEASLEY, C. L. (2001) GABAergic neuronal subtypes in the human frontal cortex-Development and deficits in schizophrenia. Journal of Chemical Neuroanatomy 22, 95–100.PubMedCrossRefGoogle Scholar
  80. RIDDELL, J. S. & HADIAN, M. (2000) Interneurones in pathways from group II muscle afferents in the lower- lumbar segments of the feline spinal cord. Journal of Physiology 522 Pt 1, 109–123.PubMedCrossRefGoogle Scholar
  81. ROGERS, J., KHAN, M. & ELLIS, J. (1990) Calretinin and other CaBPs in the nervous system. Advances Experimental in Medical Biology 269, 195–203.Google Scholar
  82. RUDOMIN, P. & SCHMIDT, R. F. (1999) Presynaptic inhibition in the vertebrate spinal cord revisited. Experimental Brain Research 129, 1–37.CrossRefGoogle Scholar
  83. SANDKUHLER, J., CHEN, J. G., CHENG, G. & RANDIC, M. (1997) Low-frequency stimulation of afferent Adelta-fibers induces long-term depression at primary afferent synapses with substantia gelatinosa neurons in the rat. Journal of Neuroscience 17, 6483–6491.PubMedGoogle Scholar
  84. SCHNEIDER, S. P. & FYFFE, R. E. (1992) Involvement of GABA and glycine in recurrent inhibition of spinal motoneurons. Journal of Neurophysiology 68, 397–406.PubMedGoogle Scholar
  85. SCHWALLER, B., MEYER, M. & SCHIFFMANN, S. (2002) ‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1, 241–258.PubMedCrossRefGoogle Scholar
  86. SNOW, P. J., ROSE, P. K. & BROWN, A. G. (1976) Tracing axons and axon collaterals of spinal neurons using intracellular injection of horseradish peroxidase. Science 191, 312–313.PubMedGoogle Scholar
  87. SOLBACH, S. & CELIO, M. R. (1991) Ontogeny of the calcium binding protein parvalbumin in the rat nervous system. Anatomy and Embryology 184, 103–124.PubMedCrossRefGoogle Scholar
  88. TOLEDO-RODRIGUEZ, M., BLUMENFELD, B., WU, C., LUO, J., ATTALI, B., GOODMAN, P. & MARKRAM, H. (2004) Correlation Maps Allow Neuronal Electrical Properties to be Predicted from Single-cell Gene Expression Profiles in Rat Neocortex. Cerebral Cortex. (Advance Access published) June 10.Google Scholar
  89. VANDERHORST, V. G., MOUTON, L. J., BLOK, B. F. & HOLSTEGE, G. (1996) Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray. Journal of Comparative Neurology 376, 361–385.PubMedCrossRefGoogle Scholar
  90. VERGARA, C., LATORRE, R., MARRION, N. V. & ADELMAN, J. P. (1998) Calcium-activated potassium channels. Current Opinion in Neurobiogy 8, 321–329.CrossRefGoogle Scholar
  91. VILLANUEVA, L., DE POMMERY, J., MENETREY, D. & LE BARS, D. (1991) Spinal afferent projections to subnucleus reticularis dorsalis in the rat. Neuroscience Letters 134, 98–102.PubMedCrossRefGoogle Scholar
  92. WIBERG, M. & BLOMQVIST, A. (1984) The spinomesencephalic tract in the cat: Its cells of origin and termination pattern as demonstrated by the intraaxonal transport method. Brain Research 291, 1–18.PubMedCrossRefGoogle Scholar
  93. WILLIS, W. D. & WILLIS, J. C. (1964) Location of Renshaw Cells. Nature 204, 1214–1215.PubMedCrossRefGoogle Scholar
  94. WILLIS, W. D. (1995) Pain. In The Rat Nervous System (edited by ACADEMIC PRESS), pp. 725–750. Sydney.Google Scholar
  95. WOODS, T. M., CUSICK, C. G., PONS, T. P., TAUB, E. & JONES, E. G. (2000) Progressive transneuronal changes in the brainstem and thalamus after long-term dorsal rhizotomies in adult macaque monkeys. Journal of Neuroscience 20, 3884–3899.PubMedGoogle Scholar
  96. YOSHIDA, S., SENBA, E., KUBOTA, Y., HAGIHIRA, S., YOSHIYA, I., EMSON, P. C. & TOHYAMA, M. (1990) Calcium-binding proteins calbindin and parvalbumin in the superficial dorsal horn of the rat spinal cord. Neuroscience 37, 839–848.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of PhysiologyNorthwestern Feinberg School of MedicineChicago
  2. 2.Physical Medicine and RehabilitationNorthwestern Feinberg School of MedicineChicago

Personalised recommendations